
Tunisian republic

Higher School of Private Engineers of Gafsa

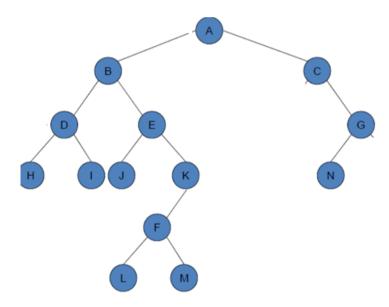
State-approved Private Higher Education Institution Under No. 05-

2013

الجمهورية التونسية ******

المدرسة العليا الخاصة للمهندسين بقفصة ******

مؤسسية جامعية خاصة مرخص لها من طرف الدولة تحت عدد: 05- 2013

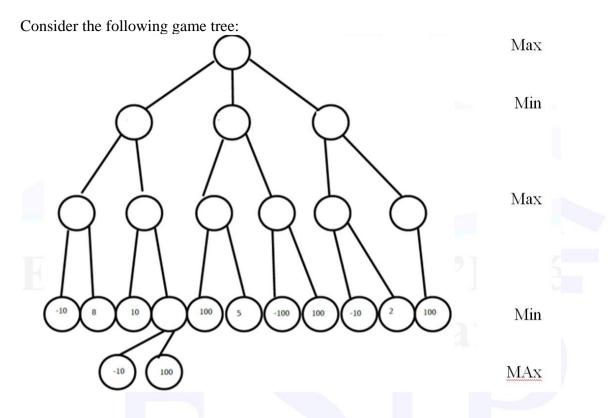

EXAMEN Session S1

A.U:	2021/2022	Cycle:	Engineering
Module:	Artificiel intelligence	Level:	3rd Level
Time:	09H.00 - 11H.00	Field	ILSI
Date		Duration:	2h
Documents:	Not Authorized	N° pages:	02

Exercise	1(6pts)	2(7pts)	3(7pts)
C.L.Os Assessement	K2, S1, S2	S2, S1, V1	<i>S1, S2, V1</i>

Exercise 1 (6pts):

Let G be an undirected graph shown in the following figure:


1. Give a depth-first traversal of the graph G going from M to N (Order of visit) (2pts).

2. Determine the data structure associated with this depth-first traversal with a limit of 2 (2pts).

3. Write the best search algorithm first (1pt).

4. Propose an improvement (in the form of an algorithm) for the Glutton algorithm (1pt).

Exercise 2 (7pts):

1. Apply the minimax algorithm to determine the values at the nodes of the graph. (1pts). 2. Apply the α - β algorithm to indicate the intermediate values of α and β , as well as the branches cut by the algorithm. (3 pts).

- 3. Represent the result of the graph after the cut-off phase (1pt).
- 4. Let $\mathbf{H} = \neg \mathbf{q}, \mathbf{a}^{\mathbf{r}}, \mathbf{r}, \mathbf{a} \Rightarrow (\mathbf{a} \Rightarrow \mathbf{q})$
- a) Define the inference rules: Modus ponens and Modus tollens (1pt).
- b) Deduce a simplification of formula H. (1pts).

Exercise 3 (7 pts):

Consider the following rule base (BR):

- 1. Si H et D et E alors F2. Si G et D alors A

 - 3. Si C et F alors A
 - 4. Si *B* alors *X*
 - 5. Si D alors E
 - 6. Si X et A alors H
 - 7. Si X et C alors A
 - 8. Si X et B alors D

1. Write the forward chaining algorithm (1pt).

2. Apply the forward chaining algorithm from the initial fact base $BF = \{B, C\}$ to prove

that F (Fact = F) is deduced from the knowledge base. (3 pts).

3. Apply the backward chaining algorithm from the initial fact base $BF = \{B, C\}$ to prove

that F is deduced from the knowledge base (3pts). **Good work**