
ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to God for giving me the strength and
the resistance to do this work.

My sincere thanks go to my academic supervisor Dr. Hayet Tlijani for offering her
invaluable guidance, comments, and suggestions throughout the completion of the project.

Besides my advisor, I would like to thank my professional supervisorMr.Nabil Khlifi
for support, enthusiasm, and immense knowledge. This project would not have been com-
pleted without his enormous contribution. A special thanks also to Mr.Nizar Khlifi
co-founder and CEO of Linksoft Consulting for helping to realize this project within his
company.

Last but not least, I would like to thank the staff members of the ESIP Gafsa school
for their generous attitude and friendly behavior. To all relatives, friends, and others who
in one way or another shared their support, either morally, financially or physically.

Thank You!

i

CONTENTS

Acknowledgements i

General Introduction 9

1 Project Presentation 11
1.1 Overview: . 11
1.2 The host company . 11

1.2.1 Description: . 11
1.2.2 Activities: . 11

1.3 Project Context: . 12
1.3.1 The Current Situation: . 12
1.3.2 Critical examination of the existing: 12
1.3.3 Problematic: . 12
1.3.4 Proposed solution: . 13

1.4 Methodology of work: . 14
1.4.1 Agile Methodology . 14
1.4.2 Scrum: . 14

1.5 Modeling Language: . 16
1.6 Work partitioning: . 16
1.7 Conclusion . 17

2 Internet of Things Ecosystem 18
2.1 Introduction . 18

2.1.1 Sprint Planning: . 18

ii

2.2 Sprint Implementation: . 20
2.2.1 Data Storage . 21
2.2.2 Data Transmission . 23
2.2.3 Hosting server . 26
2.2.4 IoT ecosystem architecture . 26

2.3 Sprint Review . 28
2.3.1 Burndown chart: . 29

2.4 Conclusion . 30

3 Machine Learning for Predictive Maintenance 31
3.1 Introduction . 31
3.2 Scope . 31
3.3 Background . 32

3.3.1 Scheduled maintenance . 32
3.3.2 Time series data . 32

3.4 Sprint Planning . 33
3.5 Machine learning for predictive maintenance 33
3.6 Artificial Neural Networks . 33

3.6.1 Recurrent Neural Networks . 34
3.7 Task 1: Data Generation . 35
3.8 Task 2: Model implementation . 36

3.8.1 Tools and Libraries . 36
3.9 Task 3: Model evaluation . 37

3.9.1 Evaluation Metrics . 37
3.9.2 Results . 38

3.10 Conclusion . 41

4 Web Application 42
4.1 Introduction . 42
4.2 Sprint Planning: . 42
4.3 Sprint Implementation: . 44

4.3.1 The planning calendar . 44
4.3.2 The 3D Maps . 47
4.3.3 Sensors view: . 52
4.3.4 Work Integration . 53

4.4 Sprint review . 54
4.4.1 The planning calendar review . 54
4.4.2 3D Map review . 55
4.4.3 Sensors View Review . 58
4.4.4 Work integration review . 59

iii

4.5 Conclusion . 60

Conclusion and Perspective 61

iv

LIST OF FIGURES

1.1 Smart Application Architecture . 13
1.2 Scrum general process [1] . 14

2.1 Iot ecosystem global use case diagram . 20
2.2 Google cloud platform: project creation. 21
2.3 Google cloud platform: MySQL instance creation. 22
2.4 Mysql prompt through cloud shell. 22
2.5 Database instance connectivity. 23
2.6 MQTT Sequence Diagram. 25
2.7 Google cloud platform container registry. 26
2.8 Iot ecosystem class diagram. 27
2.9 IoT ecosystem deployment diagram. 27
2.10 Google monitoring: Read/write operations on Virtualplant-DB. 28
2.11 Google monitoring: Read/write operations on Virtualplant-DB. 29
2.12 Burn down chart plot: Work progress VS. Time. 30

3.1 LSTM Architecture . 34
3.2 Dataset Visualization . 35
3.3 Training and validation loss over epochs 39
3.4 ROC curve plot. 40

4.1 Work Order: class diagram. 45
4.2 Web Application Development Architecture. 46
4.3 SAPUI General Architecture. 47
4.4 Factory physical architecture Hierarchy. 48

v

LIST OF FIGURES

4.5 Plane creation class diagram. 50
4.6 Web Application : adding area to the scene. 51
4.7 Activity diagram Dataflow. 53
4.8 WEB Solution Component diagram. 54
4.9 Web Application: planning calendar and navigation page. 55
4.10 WEB application: Factory Hierarchical tree. 56
4.11 3d Map: adding area. 57
4.12 3d Model Equipment. 58
4.13 Web application: Sensors View. 59
4.14 Web application: Work Integration. 60

vi

LIST OF TABLES

1.1 Project Sprint Backlog . 15

2.1 Internet Of Things: Sprint Backlog. 19
2.2 EMQ X image Configuration. 25

3.1 Predictive Maintenance: Sprint Backlog 33
3.2 Hyperparamters of our neural networks models 37
3.3 Confusion Matrix description . 37
3.4 Confusion Matrix for LSTM Model . 39
3.5 Confusion Matrix for Logistic regression Model 39

4.1 Web Application: sprint backlog. 43

vii

LIST OF ABBREVIATIONS

AI Artificial Intelligence
ANN Artificial Neural Networks

DL Deep Learning

IOT Internet Of Things

LSTM Long Short Term Memory

ML Machine Learning

RNN Recurrent Neural Networks
RUL remaining useful life

SDM Software Development Methodology

UML Unified Modeling Language

VM Virtual Machine

viii

GENERAL INTRODUCTION

In the early days of the Industrial Revolution, machines were not too complex and that
meant fewer breakdowns. As we entered into the second and third wave of the Indus-
trial Revolution, with the assembly line and rapid automation through Programmable
Logic Controllers (PLCs), the scenario had changed. There was less manual labor and
more automation through complex machinery. To remain competitive, factories started
measuring and closely tracking various performance metrics including production output,
overall equipment effectiveness, personnel productivity, etc.

Maintenance which was seen as an activity to be undertaken only when there was
a breakdown, became much more important. In an effort to predict impending failures
and mitigate downtime in their manufacturing facilities, maintenance professionals have
combined many techniques, like machine learning, internet of things and digital twins.

In fact, as a part of the internship program related to my graduation as a software engi-
neer, the company Linksoft consulting assigned me for the study, design, and development
of an application called "Virtual plant" that aims to present a predictive maintenance sys-
tem. This dissertation is organized into four chapters:

In the first section, we give an overview of the project where we present the context
of the project as well as the methodology of the work.

The second section covers our IoT ecosystem where we will stimulate the uses of
smart sensors and microcontrollers to determine equipment changes and cloud computing
solutions that provide a pathway for that data to travel to its destination.

The third section is about machine learning and its relation to predictive maintenance
based solutions that enable the system to generate, analyze data and make sense of it,

9

Introduction

then we will implement a predictive model based on a deep learning approach to predict
machine failures.

In the last section, we will put all the work together in a web application based on 3D
maps that visualize predictions as well as real-time data obtained from our equipment.

Finally, the aim of this project is to determine the importance of machine learning
and preventive maintenance through prediction so we will close with a general conclusion
and perspectives.

10

CHAPTER

1

PROJECT PRESENTATION

1.1 Overview:

In this chapter, we will give a brief overview of the project by first presenting the com-
pany in which the internship takes place in, then, we continue with the presentation of
the subject explaining its different aspects as well as the methodology adopted for its re-
alization. Later, we will expand with a product backlog where we will specify our project
requirements.

1.2 The host company

1.2.1 Description:

Linksoft is a newborn small-sized company specialized in IT consulting and more specif-
ically in the SAP ERP systems. Founded by an SAP expert (Nabil Khlifi) in “Plastic
Omnium"and managed by a software engineer (Nizar Khlifi). This company is located in
"Sidi bouzid-Tunisia".

1.2.2 Activities:

During the last years, Linksoft consulting performed some interesting tasks, their main
goals was about trading and investing in several IT projects.

11

CHAPTER 1. PROJECT PRESENTATION

The ambition of the company is to create its own development team so that it can
depend on them to realize their project instead of selling them. And actually, this project
is a key player in this context.

1.3 Project Context:

As it was mentioned Linksoft consulting work in projects trading and for that reason,
it was on the lookout for the future plans of Plastic Omnium which is represented in a
predictive maintenance system.

In order to convince the company that the idea is worth investing in, Linksoft consult-
ing has thought about a proof of concept where we will determine whether the software
can be adapted in the real environment, what development technologies should be applied
in, and whether the software is likely to be used by its intended users.

For this context, in the next sections, we will present the main business problem and
the different techniques and solutions used to solve it.

1.3.1 The Current Situation:

To help keep equipment up and running, the company relies on a preventive mainte-
nance system that plans and schedules maintenance on assets before an actual breakdown
happens.

Manufacturer’s recommendations are used to help determine the type of inspections
and maintenance needed and how often they should be performed.

1.3.2 Critical examination of the existing:

Unfortunately, the preventive approach applied by the company isn’t that efficient, it can
indeed reduce unnecessary maintenance and inspections but, on the other hand, he could
fail in predicting unplanned downtime as well as wasting the remaining useful life (RUL)
of equipment parts by changing it before it gets defected.

In addition, the system’s display wasn’t practical in most of the work scenarios.

1.3.3 Problematic:

According to Aberdeen’s research [2], the average cost per hour of equipment downtime
across all businesses is 260k dollars.

Besides cost, downtime can also have an impact on the productivity of employees,
business revenue, and in some cases, it may even affect the reputation and the credibility
of the company.

12

CHAPTER 1. PROJECT PRESENTATION

All these confusions lead to the necessity to improve and accelerate the proactive
maintenance process.

1.3.4 Proposed solution:

In order to overcome the aforementioned issues, the company seek to consider using the
predictive maintenance approach through it process.

For this reason, we have thought about a system that’s able to predict failure within a
given time window with the help of sensors and microcontrollers, while it keeps an efficient
and simplified display.

Figure 1.1: Smart Application Architecture

Figure 1.1 shows the overall application architecture which is based on the use of
smart sensors to capture information, make sense of it, and identify any areas that need
attention. This application requires sensors to measure things such as temperature, vibra-
tions, and energy consumption. We can read these measurements through Raspberry Pi
software and connect with front end applications that provide actionable insights. Then,
we implemented an ML model using data collected over time, the goal is to find patterns
that can help predict and ultimately prevent failures.

13

CHAPTER 1. PROJECT PRESENTATION

Finally, a web application that will enable users to be notified when predictions are
made.

1.4 Methodology of work:

As we have mentioned earlier, our project is composed of a number of complicated indi-
vidual parts, each part requires it’s one technology and environment to be developed.

In order to reduce the complexity of the development process, we chose to use a
Software Development Methodology[3] to plan, create, and control our project.

1.4.1 Agile Methodology

At an early stage of development, the requirements of the system were uncertain as well
as the development priorities. Thus, to be capable of handling this problem, we have
adopted the agile methodology[4], which is a set of engineering best practices that help
to quickly respond to changing demand.

1.4.2 Scrum:

One of the most widely used agile processes is scrum, which is a lightweight process frame-
work that follows an incremental and iterative development approach. The illustration in
Figure 1.2 shows the basic Scrum steps to build a specific project.

Figure 1.2: Scrum general process [1]

14

CHAPTER 1. PROJECT PRESENTATION

Roles Definition: Referring to the scrum approach we can define the different roles
adopted in our project which are defined as the following:

• Product Owner: M.Nabil Khlifi. founder of "Linksoft consulting", understand
the customer, explain and prioritize the work.

• The development team: Bilel Khlifi. design, implement, and verify the different
parts of the system, and Dr. Hayat Tlijani. help in documenting the project.

• Scrum Master: This role was provided by Mr. Nizar Khlifi who was able to
ensure good communication between the different members of the team. As well as
Tracking the progress of the sprints.

• Product Backlog: The Product Backlog is a prioritized list of all product require-
ments, including new features, functions, technologies, enhancements, and bugs.
The following Table 1.1 presents the overall project sprint backlog.

Table 1.1: Project Sprint Backlog

User Story Story points Priority Sprint
As an IT technician, I want the system to collect data
so that I can use them in the upcoming tasks.

8 High Iot Sprint

As an IT technician, I want the system to be scalable
so that it can handle all the equipment in the factory.

13 Meduim Iot Sprint

As an IT technician, I want the system to be easy
to deploy so that I can reduce the time of setup
and configuration.

5 Low Iot Sprint

As a manager, I want to build a predictive model
So that I can predict future machine failures.

20 High AI Sprint

As a maintenance manager, I want to consult the
scheduled maintenance tasks, So that I can easily
assign and describe tasks.

8 Meduim WEB Sprint

As an IT technician, I want to represent the entire
factory, So that the maintenance technician
could make updates and amends,
without tampering with the physical asset itself.

20 High WEB Sprint

As a maintenance technician, I want to visualize the
equipment status in real-time, So that I can perform
service tasks at multiple sites simultaneously.

5 Meduim WEB Sprint

As a manager, I want the application to be compatible
with the existing system, So that I can easily switch
between them.

2 Low WEB Sprint

15

CHAPTER 1. PROJECT PRESENTATION

1.5 Modeling Language:

To help visualize our system architecture and understand their different components, we
chose to use the Unified Modeling Language (UML) [5].

During this phase, we will use five different diagrams:

• Use case diagrams: To capture the different requirements of our system.

• Class diagrams: To Analyse and design, a static view of our system.

• Sequence diagram: To describe interactions among the different elements of the
system.

• Activity diagram: To captures the dynamic behavior of the system by showing
message flow from one activity to another.

• Deployment diagram: To describe the physical aspects of an object-oriented
system.

1.6 Work partitioning:

Unlike classical models, scrum has its proper approach of development which in turn can
affect how documentation could be performed. For this reason, we have added this part
to explain the steps we took to write this document.

Since each part in this project has its one business rules, architecture, and development
environment we have divided the work into a time-boxed repeatable work cycle known in
the scrum as sprints. Each sprint is composed of :

• Sprint planning: Where we define the sprint backlog using a set of product backlog
items.

• Sprint implementation: Where we design the system architecture using different
UML diagrams and present the technologies and tools used to develop our system.

• Sprint review: Where we represent what was done during the sprint depending
on screenshots and charts.

16

CHAPTER 1. PROJECT PRESENTATION

1.7 Conclusion

After defining our requirements and the methodology of our work as well as the project
context, we will investigate in the next chapter our first sprint where we will introduce
the ecosystem used to collect and transmit equipment data.

17

CHAPTER

2

INTERNET OF THINGS
ECOSYSTEM

2.1 Introduction

Having multiple different sensors that monitor different metrics can be a key to have a
better understanding of our processes and preventing early failures. Thus, in this chapter,
we present how we have applied sensors and how we have connected them to different parts
of our system.

First, we start with a sprint planning in which we select some related product backlog
items, then we identify the necessary tasks to complete each user story. After that, we
conducted a sprint implementation where we talk about different technologies and envi-
ronments used in order to perform those tasks. several UML[5] diagrams are introduced
together with the implementation to describe the structure and behavior of the system.

Finally, a sprint review where we will inspect our increment and discuss what we have
accomplished.

2.1.1 Sprint Planning:

In this section, we will define what can be delivered in the upcoming sprint and how that
work will be achieved through.

1. Sprint backlog:

18

CHAPTER 2. INTERNET OF THINGS ECOSYSTEM
Ta

bl
e
2.
1:

In
te
rn
et

O
fT

hi
ng

s:
Sp

ri
nt

B
ac
kl
og

.

Id
_
U
S

U
se
r
St
or
y

T
as
k_

ID
T
as
k

E
st
im

at
io
n/

da
y

1
A
s
an

IT
te
ch
ni
ci
an

,I
w
an

t
th
e
sy
st
em

to
co
lle
ct

da
ta

so
th
at

I
ca
n
us
e
th
em

in
th
e
up

co
m
in
g
ta
sk
s.
.

1.
1

D
at
ab

as
e
cr
ea
ti
on

.
2

1.
2

D
at
ab

as
e
co
nn

ec
ti
on

.
2

1.
3

D
at
a
in
se
rt
io
n.

3

2
A
s
an

IT
te
ch
ni
ci
an

,I
w
an

t
th
e
sy
st
em

to
be

sc
al
ab

le
so

th
at

it
ca
n
ha

nd
le

al
l

th
e
eq
ui
pm

en
t
in

th
e
fa
ct
or
y.

2.
1

P
ro
to
co
lo

bs
er
va
ti
on

.
4

2.
2

C
lie
nt

ad
op

ti
on

.
3

2.
3

B
ro
ke
r
se
le
ct
io
n.

3

3
A
s
an

IT
te
ch
ni
ci
an

,I
w
an

t
th
e
sy
st
em

to
be

ea
sy

to
de
pl
oy

so
th
at

I
ca
n
re
du

ce
th
e
ti
m
e

of
se
tu
p
an

d
co
nfi

gu
ra
ti
on

.

3.
1

V
M

in
st
an

ce
cr
ea
ti
on

.
1

3.
2

C
on

ta
in
er

in
st
al
la
ti
on

.
3

19

CHAPTER 2. INTERNET OF THINGS ECOSYSTEM

2. Use Case diagram:
To acquire a better understanding of the expected features in this sprint, we have
created a use case diagram that describes the functional requirements of the system
from the end user’s perspective. The use case diagram is shown in Figure 2.1, our
diagram is based on 2 actors, the "System equipment" which is serve to generate
the necessary data, while the "IT-technician" is then able to collect or handle the
factory equipment data and also he want to reduce the deployment time.

Figure 2.1: Iot ecosystem global use case diagram

2.2 Sprint Implementation:

As we have stated earlier, smart sensors will be used in this application to gather data,
then several analytic will be performed to find hidden patterns.

However, gathering this data requires a considerable amount of time as well as ac-
cessing real equipment and environments. As those conditions cannot be met, we have
implemented an algorithm using Thonny IDE and flask based on the python programming
language to generate our synthetic data.

Since using real hardware will make no sense in this scenario, we have only used
Raspbian OS, the official Raspberry Pi operating system.

Based on Debian bluster, the system was fully compatible with being run on a real

20

CHAPTER 2. INTERNET OF THINGS ECOSYSTEM

Pi, we can write and test code as well as installing packages and connecting to various
devices.

2.2.1 Data Storage

We’re in a digital economy where data is more valuable than ever, processing and collecting
data become an essential task for almost any business. For this reason, storing data was
a trivial task for our customers.

In the next steps, we will represent the different tasks that we have performed including
the creation and connection of our database, as well as storing the collected data.

A- Database creation: To be capable of accessing data from any device in any loca-
tion, we have chosen to adopt a cloud storage solution. Therefore, we preferred to
use cloud SQL, the fully managed relational database service from Google.

Google Cloud Platform offers hundreds of cloud-based features and tools, but before
we can access a single one, we have to create a project. We started by creating our
main project which is untitled as “Virtual plant” as can be seen in Figure 2.2.

Figure 2.2: Google cloud platform: project creation.

Cloud SQL offers a variety of instance types, in our case we have favored MySQL
instances that offer high performance and availability. Figure 2.3 shows the interface
in which we have added the instance and set the root password.

21

CHAPTER 2. INTERNET OF THINGS ECOSYSTEM

Figure 2.3: Google cloud platform: MySQL instance creation.

After that, through Cloud Shell Terminal and using our user and password (see
Figure 2.4), we were able to grant access to a fully functional MySQL prompt.

Figure 2.4: Mysql prompt through cloud shell.

Later using regular SQL statements, and through this prompt, we will be able to
create our database and table.

B- Database connection: To be able to interact with the database using external
applications, it was necessary first to configure access to our Cloud SQL instance,
by adding our raspbian os’s public IP address as an authorized network (see Figure
2.5).

22

CHAPTER 2. INTERNET OF THINGS ECOSYSTEM

Figure 2.5: Database instance connectivity.

Next, to assure the connectivity between our database and our python application
we have installed MySQL connector for python.

C- Data storage: As we have mentioned at the beginning of this chapter, we have
developed an application that is capable of generating sensors data. In order to
save those data to the newly created database, we have imported the connector
module first, then we fed our application with the required information to connect
our instance. This information includes:

• Host (MySQL instance public IP address).

• User

• Password

• Database name

Later, we have associated our generated data to a cursor object that in turn persists
data to the cloud.

2.2.2 Data Transmission

Besides storing the data, connecting data to our final application was a trivial task to
accomplish our prediction mission.

In fact, many existing solutions provide these functionalities like Leonardo from SAP
and Google Cloud IoT.

Unfortunately, those platforms are too expensive that may conflict with the needs of
our customers. In addition to cost-effectiveness, scalability, real-time response, and low
server load were mandatory requirements for our clients.

23

CHAPTER 2. INTERNET OF THINGS ECOSYSTEM

For that reason, we have implemented a solution in which we will try to meet our
customer expectations as well as realizing our proof of concept. In the next stage, we will
walk through the different tasks that need to be done to achieve our goal.

A- Protocol observation:
When we talk about transmission and communication of data, the first questions
that come to head is how network devices should format, transmit, and process
information. And in response to this, we have chosen MQTT[6], one of the most
commonly used protocols in IoT projects.

Practically speaking, MQTT was built to be a low-overhead protocol that strongly
considered bandwidth and CPU limitations. It was designed with the ability to
run in an embedded environment where it would reliably and effectively provide an
avenue for communication.

As from a fundamental view, MQTT is a publish/subscribe protocol, it allows clients
to connect as a publisher, subscriber, or both. You connect to a broker that handles
all the message passing.

B- Client adoption: To follow MQTT protocol rules, it was required in the first-hand
to obtain a client that will allow us to send our data. We chose for this task the
Eclipse Paho project that provides an open-source client implementation for MQTT
which suits our requirement.

Since Paho affords a client library for python, we have continued with extending
our python application to be able to send data to a remote broker together with the
capability of data storage and generation.

We create a topic for each metric that allows us to publish the obtained data. To
do so, we connected to the broker in which the client will use the required broker
IP address and port.

C- Broker selection:
In the Second-hand and always with MQTT protocol rules, it was also required to set
up a broker that enables us to publish our data. For this context, we chose EMQX,
a massively scalable and highly available open-source MQTT Message Broker.

Our selection was made based on different requirements:

• Support MQTT over WebSockets, which ensures communication with our web
application.

• Scalable and portable, which agrees with our customer needs.

• Support containerization, which reduces deployment complexities.

24

CHAPTER 2. INTERNET OF THINGS ECOSYSTEM

The following Table 2.2 describes the configuration used in the broker.

Table 2.2: EMQ X image Configuration.

Options Default Mapped Description

EMQX_NAME container name none Emqx node short name

EMQX_WAIT_TIME 5 none
Wait time in sec
before timeout.

EMQX_LISTENER_
TCP_EXTERNAL 1883 listener.tcp.external MQTT TCP port

EMQX_LISTENER_
WS_EXTERNAL 8083 listener.ws.external HTTP and WebSocket port
EMQX_MQTT_

MAX_PACKET_SIZE 64KB mqtt.max_packet_size Max Packet Size Allowed

The sequence diagram presented in Figure 4.6 explains how our client (IoT appli-
cation) publishes a topic to the broker, then our second client subscribes to these
topics to get data.

Figure 2.6: MQTT Sequence Diagram.

After selecting the client and the broker, we will introduce in the next section, the
deployment of the broker considering the compatibility and the portability point.

25

CHAPTER 2. INTERNET OF THINGS ECOSYSTEM

2.2.3 Hosting server

Using a broker involves installing the software on an operating system, therefore, we have
operated a compute engine on Google Cloud Platform that allows us to create a Virtual
Machine (VM) instance.

Nevertheless, installing directly the broker on the VM instance will require a lot of
configuration, libraries, and dependencies, for that reason, we have considered using a
containerized application to solve this issue.

A container is essentially a fully packaged and portable computing environment. Ev-
erything an application needs to run – its binaries, libraries, configuration files, and de-
pendencies – is encapsulated and isolated in a bundle called container image.

Compute Engine instances support a declarative method for launching applications
using containers. When creating the VM instance, we have provided the EMQX docker
image using the container registry (see Figure 2.7).

Figure 2.7: Google cloud platform container registry.

After that, the Compute Engine will supply an up-to-date Container-Optimized OS
image with Docker installed and launch the container when the VM starts up.

2.2.4 IoT ecosystem architecture

The following class diagram presented in Figure 2.8 can briefly describe better the static
view of our application.

26

CHAPTER 2. INTERNET OF THINGS ECOSYSTEM

Figure 2.8: Iot ecosystem class diagram.

Furthermore, to better visualize our system we have used a deployment diagram (see
Figure 2.9) that shows the execution architecture, including nodes such as hardware or
software execution environments, and the middle-ware connecting them.

Figure 2.9: IoT ecosystem deployment diagram.

27

CHAPTER 2. INTERNET OF THINGS ECOSYSTEM

2.3 Sprint Review

"I think it’s very important to have a feedback loop, where you’re constantly thinking about
what you’ve done and how you could be doing it better". [Elon mask]

As we have seen, the goal of this sprint was to satisfy three different user stories among
8 tasks and in a period of three weeks.

Primary, it was required to create a database to store our data. The Figure 2.10 shows
how our database have received data and saved it for later tasks.

Figure 2.10: Google monitoring: Read/write operations on Virtualplant-DB.

Secondly, it was required to transmit data over our systems using MQTT and con-
tainers The figure 2.11 below shows how the data transmitted over our VM instance
.

28

CHAPTER 2. INTERNET OF THINGS ECOSYSTEM

Figure 2.11: Google monitoring: Read/write operations on Virtualplant-DB.

Later in the production environment, the VM instance will be abandoned and replaced
by the server of the company, where we will move our container and import our database
table.

2.3.1 Burndown chart:

The following Figure 2.12 shows our work advancement against time. At the beginning
(first week) we didn’t find any struggle in the creation and connection of our database,
same for the client and broker selection phase. Since we are adopting the MQTT protocol
for a complex task, it needs a feasibility study which in turn required a considerable
amount of time more than it was estimated earlier.

29

CHAPTER 2. INTERNET OF THINGS ECOSYSTEM

Figure 2.12: Burn down chart plot: Work progress VS. Time.

We can interpret from the obtained results that our conducted sprint succeeded to
cover all the necessary parts in order to achieve our POC. In addition, it offers reusable
functionalities that can be adopted in a real-world project.

2.4 Conclusion

In this chapter, we have presented the foundation of our POC by introducing our IoT
ecosystem and its different parts including remotes dashboards, networks, gateways, and
data storage.

In the next chapter, we will dive more into details and precede with our analytic
ecosystem and explain how we have implemented machine learning techniques to uncover
the hidden patterns.

30

CHAPTER

3

MACHINE LEARNING FOR
PREDICTIVE MAINTENANCE

3.1 Introduction

In the last few years, the industry starts investigating the potential of data that has been
stored for a long time but hardly exploited. Advances in data science (or machine learn-
ing) turned very sophisticated problems into feasible tasks that can bring useful added
value to almost every industrial domain. Nowadays, learning models from data in order
to perform tasks such as predictions or information extraction has become very popular
and therefore, machine learning algorithms are becoming indispensable tools in decision
making. In this context, this thesis summarizes our efforts to exploit a deep learning
model for problems arising in the plastic industry and more precisely, in predictive main-
tenance.

3.2 Scope

Plastic Omnium is one of the most popular industries that serves billions of clients each
year. A key parameter for the efficiency of this industry is the availability of the plastic
machines, which is the percentage of time a plastic machine is in good condition and
capable to fabricate the necessary equipment . The availability is usually reduced by

31

CHAPTER 3. MACHINE LEARNING FOR PREDICTIVE
MAINTENANCE

unexpected failures, whose occurrences render the plastic machine unable to perform an
operation and therefore, sometimes leading to severe delays causing financial damages to
industry and reduce the customers satisfaction. It is the goal of predictive maintenance
to prevent such situations by making predictions about potential failures that could affect
the normal plastic machines operation.

3.3 Background

3.3.1 Scheduled maintenance

Scheduled maintenance is the traditional way of maintaining equipment and consists of a
set of maintenance procedures defined at plastic machines design time and that must be
planned in advance and performed periodically. However, whenever an unexpected failure
occurs between two scheduled maintenance slots, the equipment becomes unavailable until
the necessary maintenance actions are performed. These unexpected failures can be a
costly burden to the equipment owners because during the downtime they may not be
able to provide the expected services to their clients. On the other hand, the goal of
predictive maintenance is to prevent such unexpected equipment failures by continuously
observing the status of the equipment and raising alerts well in advance. The time between
the alert and the failure can be used by the experts to plan and perform the maintenance
and to avoid any operational disturbance. In the case of aviation, where the status of the
equipment can be reflected by data related to the operation of the plastic machine, the
challenge is to analyze such data, to translate high level predictive maintenance objectives
into data science tasks (or data mining routines) and to achieve the best possible results.

Given the increasing collections of available data generated by monitoring processes
(e.g. sensors and event logs), the goal is to predict upcoming critical events or system
failures.

3.3.2 Time series data

Time series is one of the most common data types in many real world applications (e.g.,
finance, meteorology, medicine, sensor networks) that constantly draws the attention of
the research community, and has been very well studied over the past decades. The
research and development is being performed by employing modern distributed computing
frameworks, suitable for the big-data demands of the project due to the huge amount of
information generated by various companies components.

32

CHAPTER 3. MACHINE LEARNING FOR PREDICTIVE
MAINTENANCE

3.4 Sprint Planning

Table 3.1: Predictive Maintenance: Sprint Backlog

Id_US User Story Task_ID Task Estimation/day

1
As a manager, I want to build a predi-
ctive model, So that I can predict future
machine failures.

1.1 Data Generation. 10
1.2 Model Implementation. 15
1.3 Model Evaluation. 5

3.5 Machine learning for predictive maintenance

In the recent years, the progress in the field of Artificial Intelligence (AI) with the emerging
of the Machine Learning (ML) approach has led to the improvement of the state of the
art in many areas of computer vision, reinforcement learning, Robotics, and been recently
adopted in the predictive maintenance domain. This mentioned approach offers promising
solutions and an ability to deal with problems that are largely difficult to solve by using
traditional Machine Learning methods.

Predictive maintenance and machine learning have developed a very strong connec-
tion. However, it is not always easy or straightforward to perform effective predictive
maintenance for several reasons (Lack of annotated data, Huge amounts of data, etc.).
Therefore using modern techniques based on artificial neural networks could be feasible
for solving these problems.

3.6 Artificial Neural Networks

ANN is a computational tool inspired by the network of neurons in biological nervous
system. its a classifier modeled after how the human brain works, which is different from
how one usually writes computer code.

ANN presents a network consisting of arrays of artificial neurons linked together with
different weights of connection. The states of the neurons as well as the weights of
connections among them evolve according to certain learning rules.

Practically speaking, neural networks are nonlinear statistical modeling tools which
can be used to find the relationship between input and output or to find patterns in a
vast database.

ANN has been adopted in various areas of statistical model development, adaptive
control system, pattern recognition, data mining, and decision making under uncertainty.
There are several types of network architectures that can be used depending on the type of
problem and the purpose intended. Different design patterns and architectures improved
to deal with specific case problems.

33

CHAPTER 3. MACHINE LEARNING FOR PREDICTIVE
MAINTENANCE

Generally, it exists a different variety of neural network architectures such as Recurrent
neural networks which become an active research area in the DL approach.

3.6.1 Recurrent Neural Networks

Recurrent neural networks (RNN) can be defined a sequential model of neural networks,
which have the property of reusing information already given. One of their main assump-
tions is that the current information has a dependency on previous data. The ultimate
goal of this neural architectures is recognizing the data’s sequential characteristics and
applying patterns to predict the next likely scenario. RNN’s has been widely used in
speech recognition and NLP. One pf the popular algorithm based on RNN’s architectures
is the Long Short Term Memory (LSTM).

• LSTM: this types of RNN offers a special architecture allows them to represent long
term dependencies. Moreover, they are specifically designed to remember informa-
tion patterns and information over long periods of time. Therefore, this model is
useful in our case for the prediction the machine failure trained within an important
period of time.

Figure 3.1: LSTM Architecture

Figure 3.1 shows the general architecture of LSTM algorithm, When the data flows inside
the LSTM cell, the first step consists in deciding what information is necessary to keep and
what is not. The second step involves the input gate and allows the LSTM to establish
which of the new information to store timestep, and the values coming from the previous
one. Finally, the last step allows the generation of the LSTM output predictions.

34

CHAPTER 3. MACHINE LEARNING FOR PREDICTIVE
MAINTENANCE

3.7 Task 1: Data Generation

Since we dont yet have an access to a flexible data set related to the ominuim company,
our experiment was essentially based on synthetic dataset, which is is a repository of
data that is generated programmatically. So, it is not collected by any real-life survey or
experiment.

Our initial dataset was created using a script based on python language and SQLite[7],
we designed our module to automatically collect 500k instances and their corresponding
metadata. The program focused on collecting the necessary information from the corre-
sponding sensors. Since we are collecting data instances related to machine failure. Our
choice was essentially based collecting data over a period of 1 year. Figure 3.2 shows an
overview of our obtained dataset.

Figure 3.2: Dataset Visualization

The metadata of our data sets are :

• ID: Primary key.

• Energy: The energy consumption for a machine.

• Vibration: The vibration condition.

• Temperature: The degree of temperature of a machine.

• Timestamp: Reference particular moments in time related to machine failure.

• Failure: The condition of a machine which takes 1 as failure and 0 as working.

For the training of our deep learning model and due to the GPU limitation and compu-
tation resources, we limited the number of instances to 100k, while we used the strategy
of train-test-validation of 80% train, 10% test and 10% validation.

35

CHAPTER 3. MACHINE LEARNING FOR PREDICTIVE
MAINTENANCE

3.8 Task 2: Model implementation

3.8.1 Tools and Libraries

Following [8] who demonstrated that using recurrent neural network LSTM in predictive
maintenance can outperform other conducted approaches. In first hand, we aimed to use
this model as a main algorithms, while in second hand, we performed an analysis study to
test our approach using other machine learning algorithms such as: logistic regression[9],
decision tree, random forest.

In order to obtain the results presented in this thesis we performed our experiments
using available tools and libraries. The ones that were during the implementation of our
predictive model are:

• Google collab. Since training our model is expensive in term of resources, we ended
up by using the Google Colaboratory tool, which is a free research tool with a Tesla
K80 GPU and 12G RAM.

• Keras.[10] Keras is a deep learning API written in Python, running on top of the
machine learning platform TensorFlow.

• Matplotlib.[11] A python plotting library that was used to generate all the figures
that present analysis results.

• Scikit-Learn.[12] A python library for Machine Learning which includes a plethora
of both state of the art and recent algorithms.

To accomplish this, we goes through different steps to implement our predictive model.

1. Data ingestion: We used data ingestion task on our datasets which presents a
process by which data is moved from one or more sources to a destination where it
can be stored and further analyzed.

2. Data prepossessing: Since the time series data is of varying length, we cannot
directly build a model on this dataset. Moreover, data need to be transform into
an understandable format before feeding it to our model. Thus, we Pad the shorter
sequences with zeros to make the length of all the series equal, while we used a
scaler to perform the data transformation.

3. Building model: It is important to adjust the most suitable hyper-parameters
when training neural networks to increase their performances and avoid some prob-
lems like over-fitting. We adapted our LSTM model for a binary classification. To
do so, we go through a model selection process in order to find the best model
configuration. As for our main LSTM classifier, we adopted the hyper-parameters

36

CHAPTER 3. MACHINE LEARNING FOR PREDICTIVE
MAINTENANCE

of 100 hidden layers-based model, with a dropout a dropout equal to 0.1. we used
Adam as the optimization algorithm. The batch size is fixed to 200 due to GPU
limitation, other Hyperparamters are shown in Figure 3.2. As for testing strategy
(all models), We split our dataset into 80% for training and 20% for testing and
validation respectively. During each epoch, our LSTM was trained on the training
set and evaluated on the validation set.

Table 3.2: Hyperparamters of our neural networks models

Hyperparamaters Values
Dropout 0.2

Window size 5
Nb. of epochs 100
Batch size 200

Activation function Sigmoid
Optimizer Adam

Since we are training our model to perform a binary classification, at the end of the
architecture is necessary to use a dense layer to generate as output, only one number
which in this context is represented by prediction given in input a sequence of sensors
measurements. In addition, we used a Sigmoid activation function to generate the desired
prediction. The final outputs can be seen as following.

Example. "The machine will fail at (1.546E+09) with (21.364) failure"
Where "1.546E+09" presents and the timestamp and "21.364" the percentage of failure.

3.9 Task 3: Model evaluation

3.9.1 Evaluation Metrics

for our binary classifier model, we first used the confusion matrix that is able to evaluate
the optimal solution during the classification training [13] which is shown in Table 3.3.

Table 3.3: Confusion Matrix description

Predicted Positive Predicted Negative
Actual Positive TP FN
Actual Negative FP TN

We details each term below:

• TP: the number of true positives that represents the correctly predicted positive
values.

37

CHAPTER 3. MACHINE LEARNING FOR PREDICTIVE
MAINTENANCE

• FN: the number of false negatives which represents the incorrectly predicted labels
that are actually positive and predicted as negative.

• FP: the number of false positives which refers to the values that the model identifies
as positive and are actually negative.

• TN: the number of true negatives that refers to the correctly predicted negative
values.

So, we use this confusion matrix to compute our evaluation metrics:

• Precision: the number of correctly predicted positive labels divided by the total
number of actual labels classified by the system as positive [14].

Precision =
TP

TP + FP
(3.1)

• Recall: the fraction of correctly classified positive labels to the total number of
positive examples in the data [14].

Recall =
TP

TP + FN
(3.2)

• Roc Curve: Receiver operating characteristic curve shows the true positive rates
against the false positive rate at various cut points. It also demonstrates a trade-off
between sensitivity (recall and specificity or the true negative rate).

• Accuracy: Which presents the quintessential classification metric and means that
shows how many true results are predicted correctly. It can be defined as the ratio
of the correctly predicted labels to the total number of samples.

Accuracy =
TP + TN

TP + FP + TN + FN
(3.3)

3.9.2 Results

• Loss and Accuracy: After training our LSTM model only 5 epochs we scored an
accuracy value of 98% for both training and validation set, while we got a loss values
of 0.09 for training and 0.098 for validation as can be shown in Figure 3.3. However,
logistic regression model was able to score a higher score of 1% point margin from
LSTM model.

38

CHAPTER 3. MACHINE LEARNING FOR PREDICTIVE
MAINTENANCE

Figure 3.3: Training and validation loss over epochs

• Confusion matrix: As mentioned earlier the array from matrix presented in Table
3.4 is as follow , tn, fp, fn, tp.

Table 3.4: Confusion Matrix for LSTM Model

Predicted Positive Predicted Negative
Actual Positive 103232 0
Actual Negative 1887 0

Table 3.5: Confusion Matrix for Logistic regression Model

Predicted Positive Predicted Negative
Actual Positive 102979 253
Actual Negative 363 1525

Our true negative are 103232, meaning machines that the model consider that aren’t
in failure state, and our false positive is 0, meaning that LSTM model didn’t predict
that machine is able to predict failure while it can’t in reality.

39

CHAPTER 3. MACHINE LEARNING FOR PREDICTIVE
MAINTENANCE

Our false negative is 1887 and true positive is also 0, meaning that LSTM model
didn’t correctly predict the machine failure while its in reality in a failure state.

This can be explained that we might have a lot of instances in our data set in which
they are in a failure state compared to other instances who are not(balance in
vibration, temperature) are similar to both. However, for logistic regression model
(Table 3.5), it was no 0 values for FN and TN, meaning that this model enable to
perform better predictions values compared to LSTM model.

• Evaluation under other metrics: Since the model accuracy is not always the
efficient metric for the model evaluation especially when dealing with problems like
class imbalance. We used other precise metrics which are widely adopted for time
series classification task such as Precision, Recall, F1-score and ROC.
The logistic regression classifier was able to efficiently predict labels with a precision
of 85% , while it scored a Recall of approximately 80%. (F1) metric presents the
harmonic mean or balance between (P) and (R), our logistic classifier is still scoring
an acceptable score of 83%.
According to the Figure 3.4 which contains the ROC curve of our logistic regression,
our classifier gives a curve closer to the top-left corner (closer to the value 1) which
is 0.99. this score shows that our model performing a better performance and a
good measure of separability among all class labels. However, our labels have high
correlation with some of the features, and since our target label are clear and easy
to predict, models like decision tree and random forest in this case prove to score
perfect results of 100% in almost all metrics.

Figure 3.4: ROC curve plot.

40

CHAPTER 3. MACHINE LEARNING FOR PREDICTIVE
MAINTENANCE

3.10 Conclusion

In this chapter, we covered the different steps for building our predictive maintenance
model. We evaluated our approach under the most known metrics for time series classi-
fication. Therefore, We was able to achieve a good prediction results after training our
deep models.

41

CHAPTER

4

WEB APPLICATION

4.1 Introduction

Creating meaningful designs, capturing the attention of customers, and—more impor-
tantly—influencing their behavior is something that project managers, developers, and
customers will agree that are the most important things to achieve.

For that reason, we have focused on this part in conceiving and implementing an ap-
plication that delivers an impressive design using top trending user interface technologies,
and that interact significantly with the company’s business process through the use of
SAP ERP different platforms.

Our redaction remains the same as the previous chapters in which we start with a
sprint planning defining the different tasks then a sprint implementation describes the
development process and a sprint review that exposes our final application.

Since this application interacts directly with the customer, we have considered this
sprint the most essential part with ultimate priority.

4.2 Sprint Planning:

42

CHAPTER 4. WEB APPLICATION
Ta

bl
e
4.
1:

W
eb

A
pp

lic
at
io
n:

sp
ri
nt

ba
ck
lo
g.

Id
_

U
S

U
se

r
S
to

ry
T
as

k_
ID

T
as

k
E
st

im
at

io
n
/

d
ay

1
A
s
a
m
ai
nt
en
an

ce
m
an

ag
er
,I

w
an

t
to

co
ns
ul
t
th
e
sc
he
du

le
d

m
ai
nt
en
an

ce
ta
sk
s,

So
th
at

I
ca
n
ea
si
ly

as
si
gn

an
d

de
sc
ri
be

ta
sk
s.

1.
1

W
eb

se
rv
ic
e
cr
ea
ti
on

.
4

1.
2

P
la
nn

in
g
ca
le
nd

ar
im

pl
em

en
ta
ti
on

.
3

2
A
s
an

IT
te
ch
ni
ci
an

,I
w
an

t
to

re
pr
es
en
t
th
e
en
ti
re

fa
ct
or
y,

So
th
at

th
e
m
ai
nt
en
an

ce
te
ch
ni
ci
an

co
ul
d
m
ak

e
up

da
te
s

an
d
am

en
ds
,w

it
ho

ut
ta
m
pe

ri
ng

w
it
h
th
e
ph

ys
ic
al

as
se
t
it
se
lf.

2.
1

H
ie
ra
rc
hi
ca
lT

re
e
C
re
at
io
n.

9

2.
2

P
la
ne

cr
ea
ti
on

.
3

2.
3

Lo
ad

in
g
M
ec
ha

ni
sm

Im
pl
em

en
ta
ti
on

.
5

3
A
s
a
m
ai
nt
en
an

ce
te
ch
ni
ci
an

,I
w
an

t
to

vi
su
al
iz
e
th
e

eq
ui
pm

en
t
st
at
us

in
re
al
-t
im

e,
So

th
at

I
ca
n
pe

rf
or
m

se
rv
ic
e

ta
sk
s
at

m
ul
ti
pl
e
si
te
s
si
m
ul
ta
ne
ou

sl
y.

3.
1

P
ah

o
cl
ie
nt

in
te
gr
at
io
n
an

d
im

pl
em

en
ta
ti
on

3

3.
1

Se
ns
or
s
vi
ew

pa
ge

de
si
gn

1

4
A
s
a
m
an

ag
er
,I

w
an

t
th
e
ap

pl
ic
at
io
n
to

be
co
m
pa

ti
bl
e

w
it
h
th
e
ex
is
ti
ng

sy
st
em

,S
o
th
at

I
ca
n
ea
si
ly

sw
it
ch

be
tw

ee
n
th
em

.
4.
1

In
te
gr
at
in
g
w
it
h
th
e
ol
d
ap

p
2

43

CHAPTER 4. WEB APPLICATION

4.3 Sprint Implementation:

Good planning without good working is nothing. [Napoleon Hill]

4.3.1 The planning calendar

Staying up-to-date with operations in the plant is an essential part for maintenance teams.
Either it’s a recurring task done at regular intervals or a one-time task, having it well
scheduled can become a challenge for maintenance managers.

To help get maintenance jobs fall within a suitable time, and for the appropriate tech-
nician, we have thought about a planning calendar that aims to facilitate and accelerate
the scheduling process.

Actually ,SAP offers a smart calendar through its intuitive web framework SAPUI5
that we have stood on to implement the different components of this project.

Based on Fiori user experience, this calendar could easily and effectively allow man-
agers to make changes to the maintenance schedule.

In order to build our calendar, it was required to perform two major steps, first step
consist of the creation of a web service, while the second includes data binding and view
implementation.

Creating the web service:

The planning calendar allows users to see and make various arrangements simultaneously.
In terms of maintenance, we can use the calendar to arrange the different orders and
show the arrangements of several items related to our machines. Using this calendar and
through navigating work orders, a manager can consult order details, history, operations,
and more.

The following diagram 4.1 could describe better a work order by showing its structures
as well as its attributes and relationships.

44

CHAPTER 4. WEB APPLICATION

Figure 4.1: Work Order: class diagram.

Using SAP easy access and through the use of transactions, we have connected to the
SAP gateway service that will allow data within our SAP system to be accessed by the
outside world via OData services.

After that we define our data structure by creating entities and entity sets as well as
the associations that link them together. Using another transaction and always with SAP
gateway service builder, we have accessed to ABAP Workbench that enabled us through
the ABAP programming language to process and transform our data before exposing it
to the web services.

45

CHAPTER 4. WEB APPLICATION

Figure 4.2: Web Application Development Architecture.

The Figure 4.3 explains how our web service interacts with our front end development
platform.

Data binding and user interfaces:

Based on the previously created web service and using different SAPUI5 technologies we
will complete the implementation of our solution. SAPUI5 is a client UI technology based
on JavaScript, CSS and HTML5. Apps developed with SAPUI5 run in a browser on any
device (mobile, tablet or desktop PC).

46

CHAPTER 4. WEB APPLICATION

Figure 4.3: SAPUI General Architecture.

Following the MVC architecture used by sapui5, we were able in the first hand to
represent our planning calendar and order navigation page and this is depending on XML
and JS views.

Using OData and JSON models we interacted and retrieved data from our web ser-
vice. And In order to allow views and models to interact with each other, we have used
controllers.

4.3.2 The 3D Maps

Digital Twin has gained significant impetus as a breakthrough technological development
that has the potential to transform the landscape of manufacturing today and tomorrow
[15]. Digital Twin[16] acting as a mirror of the real world, provides a means of simulating,
predicting and optimizing physical manufacturing systems and processes.

Now, Digital Twin has evolved into a broader concept that refers to a virtual rep-
resentation of manufacturing elements such as personnel, products, assets and process
definitions, a living model that continuously updates and changes as the physical coun-
terpart changes to represent status, working conditions, product geometries and resource

47

CHAPTER 4. WEB APPLICATION

states in a synchronous manner [17]. The digital representation provides both the ele-
ments and the dynamics of how a physical ‘thing’ operates and lives throughout its life
cycle.

Based on this technology and in responding to our customer needs, we have thought
to use a digital representation that will represent particular physical assets in the factory.
This will subsequently allow technician maintenance to gauge the condition, performance,
and history of the physical asset and make updates and amends, without tampering with
the physical asset itself.

Our digital representation or as well as called “3D Map” consisted essentially from
three different elements:

• A Tree that represents the hierarchy of the element consisting our map.

• A plane that will hold our 3D models.

• A mechanism to create and load 3D models to our map.

Factory Hierarchical Tree

Having multiple elements constructing a plan makes drawing a 3D map become rather
complicated. To simplify this task, We have used a tree that represents the hierarchies of
the company in terms of equipment and locations.

Figure 4.4: Factory physical architecture Hierarchy.

48

CHAPTER 4. WEB APPLICATION

As it’s shown in the Figure 4.4 our company hierarchy apply the SAP-PM module
organizational structure where we find :

• Plant: in which maintenance task are planned.

• Area: A maintenance plant can be divided into sub-parts which are known as plant
sections. For example, a plant can be divided into production area, store, electrical
substation, etc.

• Sub-Area: The location where a functional object is physically installed in a plant
section. It is used for informative purposes.

• Functional location: Represents the place at which a maintenance task is to be
performed.

To be able to create this tree, we have conducted the same process used previously in the
creation of our web service and link it with our front end component through the use of
data binding.

Plane creation:

In order to create and display our plane, we have used three.js, the famous Javascript
library that integrates efficiently with SAPUI5.

Let’s give an idea of the structure of our app. A three.js app requires to create a
bunch of objects and connect them together. To summarize, the Figure 4.5 represents the
different objects that consist our map as well as their relationship. As the class diagram
explain, to create our plane we have used different objects including :

• A scene where we place our objects (e.g, geometries, lights and camera.)

• Perspective camera that mimics the way the human eye sees. It is the most common
projection mode used for rendering a 3D scene.

• WebGLRenderer that displays and renders scenes using WebGL.

• SpotLight and DirectionalLight used in lighting our scene. This light can cast
shadows.

• Boxgeometry to create our plane.

However, additional controls were used to enhance our application, like OrbitControls
that allow the camera to orbit around a target and DragControls that provide the drag
and drop functionality.

49

CHAPTER 4. WEB APPLICATION

F
ig
ur
e
4.
5:

P
la
ne

cr
ea
ti
on

cl
as
s
di
ag

ra
m
.

50

CHAPTER 4. WEB APPLICATION

3d Model Loading:

Creating and loading models that will fit the factory design could be a very complicated
and time consuming task and since we are developing a proof of concept Thus, it was
required from us to deliver a functionality to load the final model on the two corresponding
categories. Later in a production environment, we will juste upload our models that fit
the factory architecture and then we call our functions for the loading.

To mitigate this, first we constructed our 3D model in three.js using different ge-
ometries and texts, then we used our model in creating and adding area and functional
location.

Figure 4.6: Web Application : adding area to the scene.

As the sequence diagram explains, an IT technician will use the tree to navigate and
choose the elements (e.g., area, sub area, etc.) to be added to the plane.

Another page that contains an area description, where a user will choose the area to be
added , after that another page in the tree will popup and ask for color and transparency.
Then, a system will check if the area already exists in the scene, in case it does not exist,
the creation of an area is done using a BoxGeometry, after that we assign a color using
color palette from sapui5 and MeshBasicMaterial.

Using textSprite from three.js a we added a text containing the area name. Also,
adding a subarea will follow the same instruction with a difference in the existing of the

51

CHAPTER 4. WEB APPLICATION

parent area, meaning that we cannot add subarea if its parent does not exist. The second
method of adding an element to our map is the use of external 3d models and we have
applied this method in loading equipment as well as notifications.

Based on GLTF (GL Transmission Format) which can be defined as a 3D file format
that stores 3D model information in JSON format. The use of JSON minimizes both
the size of 3D assets and the runtime processing needed to unpack and use those assets.
It was adopted for the efficient transmission and loading of 3D scenes and models by
applications. Using using GLTFLoader from three.js, we have delivered and loaded our
3D content effectively.

4.3.3 Sensors view:

Front End development is no longer limited just to the Browser, Web-based user interfaces
are expanding their boundaries to new devices. In IoT context, sensors are devices that
can be used to measure a property, such as pressure, vibration, temperature, etc. and
respond with feedback. Sensors present the ultimate solution that enables managers to
detect and visualize real-world data in an intelligible way.

In order to benefit from the power of Sensors, it was required to connect them with
our web application. Again using Paho client together with the flexibility of SAPUI5, we
have integrated the Javascript library implementation that enables us to receive messages
from the broker using WebSockets.

The following diagram 4.8 illustrates how the communication between the broker and
the different clients occurs.

52

CHAPTER 4. WEB APPLICATION

Figure 4.7: Activity diagram Dataflow.

4.3.4 Work Integration

As we have seen during this sprint, our final solution is composed of independently de-
signed applications each one with its own purposes.

To enable these components to work together, it was required to pass by a phase of
integration where we will merge and optimize data and workflows between our different
applications. To do So, we have updated the libraries of the existing application to fit the
version that we have worked with. After that, we moved all related files, configurations,
and dependencies to the existing application.

The following diagram 4.8 represents the different components used to model a static
implementation view of our system.

53

CHAPTER 4. WEB APPLICATION

Figure 4.8: WEB Solution Component diagram.

As the diagram explains, our web solution consists of different components includ-
ing SAP ERP that is used to fetch different work orders. In addition to that, several
connections were made through specified ports to obtain sensor data from outside our
system.

4.4 Sprint review

4.4.1 The planning calendar review

As the Figure 4.9 displays, using our calendar and through navigating a web order we
can consult order details and operations related to this order as well as history and
attachments.

54

CHAPTER 4. WEB APPLICATION

Figure 4.9: Web Application: planning calendar and navigation page.

However, our calendar can be enhanced by adding drag and drop functionality which
will facilitate tasks management and improve user experience. Besides, We could also use
this calendar in displaying predictive orders. Using different colors and filters would be
great functionality to distinguish between orders types.

4.4.2 3D Map review

As it was described in the implementation section, a 3D map necessitates the creation of
a tree that will first allow the technician to add elements to our map.

55

CHAPTER 4. WEB APPLICATION

Figure 4.10: WEB application: Factory Hierarchical tree.

As the figure 4.10 displays, using the tree we could navigate through the different
elements composing the factory(area, subarea, functional location, and equipment) we
could also consult element description as well as assigning a color and transparency degree.
After that using the “Add to scene “ button we can add an element to our map. In example,
the following Figure 4.11 presents our map containing an area.

56

CHAPTER 4. WEB APPLICATION

Figure 4.11: 3d Map: adding area.

After adding different shapes and geometries to represent our factory sections, we
were asked to develop an algorithm that allows the loading of pre-existing 3D models.
The following Figure 4.12 demonstrates a 3D model that represents a piece of equipment
together with a cone as a notification.

57

CHAPTER 4. WEB APPLICATION

Figure 4.12: 3d Model Equipment.

4.4.3 Sensors View Review

As the Figure 4.13 demonstrates, we have arrived to connect temperature, vibration, and
power consumption of the material feeding equipment through a simple web interface.

58

CHAPTER 4. WEB APPLICATION

Figure 4.13: Web application: Sensors View.

In a future version of this app, we could record in the background all sensor data
and render it as a chart, this will help maintenance technicians to visualize equipment
condition history.

4.4.4 Work integration review

Having a fully operational application that contains different components using different
technologies was a challenging task.

59

CHAPTER 4. WEB APPLICATION

Figure 4.14: Web application: Work Integration.

As it’s seen in the Figure 4.14, using a menu we could easily navigate between the
different views while maintaining the responsiveness of the page.

4.5 Conclusion

Through this last chapter, we enhanced the existing preventive system by implementing
a planning calendar that help organize better the work orders.we built a 3D map, to
obtain digital representation of our factory. We also connected our sensor data to our
application, while we put all the work together by integrating our different application
into one single system solution.

60

CONCLUSION AND PERSPECTIVE

Manufacturing is undergoing a digital transformation—the use of technology to improve
business results—driven by smart technology and connected devices. In a manufacturing
organization, digitization can include any function including the back office and sup-
ply chain applications, factory automation, data analytic and more. In this context,
LINKSOFT consulting open its door and welcomed us to be a part of the digital trans-
formation of Plastic Omniuim that will increase the efficiency, productivity and accuracy
of this industry.

This experience allowed us to accumulate a large amount of information, it was an
opportunity for us to refine our capabilities in terms of cloud computing, artificial intel-
ligence and the internet of things.

We were able in the first place to simulate how a raspberry PI and its different sensors
would work, after that using google cloud platform we have run database and virtual
machine cloud instances to connect different devices.

Furthermore, we were able to create a DL models that enable to predict machine
failures with a good measure of performance (scores above 90% in all metrics.) In addition,
this project has led us to discover and manipulate SAP tools which remains a leader in
enterprise application software.

This experience also allowed us to deepen and put into practice our theoretical and
practical knowledge acquired throughout our university course at ESIP.

As future work, our solution has the advantage of being open and extensible, in this
context, we plan to expand our project by adding an augmented reality application that
will enable technician to consult equipment conditions using their smart glasses.

61

THREATS TO VALIDITY

Internal and external Threats to Validity are concepts that emphasize the trust-worthiness
and meaningfulness of the results of a study.Although internal validity is related to how
well a study (its structure) is performed, external validity is related to how the findings
are applicable to the real world. Several threats might be impactful on the results and
validity of our work. The problems that we faced during the project was mostly about
the project deadline and data confidentiality.

• Project deadline: Due to the pandemic situation and the tasks complexity, we
were not able to perfectly arrive to finish deploy our predictive model–Predictive
models deployment provides the option to deploy the analytic result to every day
decision making process, for automating the decision making process. the predictive
model validation and deployment are time consuming activity, which takes months
depending on the business scenarios. But overall we have accomplished the rest of
all the necessary tasks to perform the prediction process.

• Data inconsistency: Since we performed our experiment on a synthetic data, our
results remains not consistent, therefore, we aim in the future to use a real world
data generated from the Plastic Ominuim company to better prove the trustfulness
of our results

62

BIBLIOGRAPHY

[1] V. Marakana. Agile scrum methodology, year = 2020, howpublished=https:
//medium.com/@vishal.marakana/agile-scrum-methodology-c1dbd7425dcf.

[2] R. Arsenault. Stat of the week: The (rising!) cost of downtime,
year = 2016, howpublished=https://www.aberdeen.com/techpro-essentials/
stat-of-the-week-the-rising-cost-of-downtime.

[3] David Y. Software development methodologies. White paper, 08 2013.

[4] Gaurav K. and Pradeep B. Impact of agile methodology on software development
process. International Journal of Computer Technology and Electronics Engineering
(IJCTEE), 2:2249–6343, 08 2012.

[5] James R., Ivar J., and Grady B. Unified modeling language reference manual, the
(2nd edition). 2004.

[6] Dipa S. and Ashwin M. A survey on mqtt: A protocol of internet of things(iot).
2017.

[7] Richard D Hipp. SQLite, 2020.

[8] D. Bruneo and F. De Vita. On the use of lstm networks for predictive maintenance
in smart industries. In 2019 IEEE International Conference on Smart Computing
(SMARTCOMP), pages 241–248, 2019.

[9] Claude S. and Geoffrey I. Webb. Logistic regression. Encyclopedia of Machine Learn-
ing, 5:631–631, 2010.

63

https://medium.com/@vishal.marakana/agile-scrum-methodology-c1dbd7425dcf
https://medium.com/@vishal.marakana/agile-scrum-methodology-c1dbd7425dcf
https://www.aberdeen.com/techpro-essentials/stat-of-the-week-the-rising-cost-of-downtime
https://www.aberdeen.com/techpro-essentials/stat-of-the-week-the-rising-cost-of-downtime

BIBLIOGRAPHY

[10] Chollet and François. Keras. https://keras.io, 2015.

[11] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, 9(3):90–95, 2007.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. VanderPlas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in python.
J. Mach. Learn. Res., 12:2825–2830, 2011.

[13] Mohammad H. and Sulaiman Md. Nasir. A review on evaluation metrics for data
classification evaluations. International Journal of Data Mining Knowledge Man-
agement Process, 5:01–11, 03 2015.

[14] M. Sokolova and G. Lapalme. A systematic analysis of performance measures for
classification tasks. Inf. Process. Manage., 45(4):427–437, 2009.

[15] G. Lo K.D. Bettenhausen R. Rosen, G. von Wichert. About the importance of
autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine
48, 2:567–572, (2015).

[16] D.D.S. Stargel E.E.H. Glaessgen. The digital twin paradigm for future nasa and us
air force vehicles. in: 53rd AIAA/ASME/ASCE/AHS/ASC structures, Structural
Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures
Conference 14th AIAA, 2:p. 1818, 2012.

[17] ISO. Digital twin manufacturing framework (under development). ISO/AWI 23247,
2:2249–6343, 2019.

64

https://keras.io

	Acknowledgements
	General Introduction
	Project Presentation
	Overview:
	The host company
	Description:
	Activities:

	Project Context:
	The Current Situation:
	Critical examination of the existing:
	Problematic:
	Proposed solution:

	Methodology of work:
	Agile Methodology
	Scrum:

	Modeling Language:
	Work partitioning:
	Conclusion

	Internet of Things Ecosystem
	Introduction
	Sprint Planning:

	Sprint Implementation:
	Data Storage
	Data Transmission
	Hosting server
	IoT ecosystem architecture

	Sprint Review
	Burndown chart:

	Conclusion

	Machine Learning for Predictive Maintenance
	Introduction
	Scope
	Background
	Scheduled maintenance
	Time series data

	Sprint Planning
	Machine learning for predictive maintenance
	Artificial Neural Networks
	Recurrent Neural Networks

	 Task 1: Data Generation
	Task 2: Model implementation
	Tools and Libraries

	Task 3: Model evaluation
	Evaluation Metrics
	Results

	Conclusion

	Web Application
	Introduction
	Sprint Planning:
	Sprint Implementation:
	The planning calendar
	The 3D Maps
	Sensors view:
	Work Integration

	Sprint review
	The planning calendar review
	3D Map review
	Sensors View Review
	Work integration review

	Conclusion

	Conclusion and Perspective

