

Course Title:	Applied Probabilities and Statistics
Course Code:	CSE112
Program:	Master Degree In Computer Engineering
Department:	Computer Engineering
Course coordinator:	Dr. Issam DHAHRI
Institution:	Private Higher School of Engineers of Gafsa (ESIP)

A. Course Identification

1. Credit hours: 3 (2-1-0)
2. Course type
a. College Department Others
b. Fundamental Transversal Optional
3. Level/year at which this course is offered: 1.1/3
4. Pre-requisites for this course (if any): Basic Probability and Mathematics

1. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Self- study	Total workload
1	Traditional classroom			
2	Blended	45		
3	E-learning		35	80
4	Distance learning			
5	Other ()			

2. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture Privee de L-918	30
2	Laboratory/Studio	
3	Tutorial	15
4	Others (specify)	-
	Total	45

B. Course Objectives and Learning Outcomes

Course Description

This course introduces students to probability and statistical analysis, focusing on data interpretation and decision-making. It covers descriptive statistics, including data collection, visualization, measures of central tendency, dispersion, correlation, and regression analysis.

Students will also learn probability theory, exploring sample spaces, probability rules, conditional probability, independence, and probability distributions. The course concludes with inferential statistics, covering estimation theory, confidence intervals, hypothesis testing, and statistical decision-making.

By the end of the course, students will be able to apply statistical reasoning and probability models to solve real-world problems in engineering and applied sciences.

Course Main Objective

This course aims to:

- ✓ Introduce fundamental statistical concepts, including types of data, measures of central tendency, and dispersion to describe and analyze datasets.
- ✓ Develop skills in bivariate data analysis, covering correlation, covariance, and linear regression for understanding relationships between variables.
- ✓ Teach probability theory, including sample spaces, probability rules, conditional probability, and independence to model uncertainty in real-world scenarios.
- ✓ Explain random variables and probability distributions, focusing on discrete and continuous models used in statistical analysis.
- ✓ Provide an understanding of inferential statistics, including estimation theory, confidence intervals, and hypothesis testing for making data-driven decisions.

CLOs		Aligned PLOs
1	Knowledge and understanding	
E .c	 Understand fundamental statistical concepts, including data types, measures of central tendency, and dispersion. Analyze relationships between variables using correlation, covariance, and regression analysis. 	PLO.K1
2	Skills	
2.1	 Interpret statistical results effectively and communicate findings through reports, presentations, and discussions. Use statistical reasoning to support decision-making, ensuring clarity and collaboration in multidisciplinary environments. 	PLO.S2
2.2	 Apply probabilistic and statistical models in solving engineering problems, considering constraints and changing requirements. 	PLO.S7
2.3	✓ Apply probability theory, including sample spaces, probability rules, and independence, to solve engineering problems.	PLO.S7

1. Course Learning Outcomes

C. Course Content

No	List of Topics	Contact Hours
01	 Part 1: Descriptive Statistics 1.1. Chapter 1: Vocabulary of Statistics Definitions of Key Terms Types of Data: Qualitative vs. Quantitative Levels of Measurement: Nominal, Ordinal, Interval, Ratio 1.2. Chapter 2: One-Dimensional Numerical Series Data Collection Methods Measures of Central Tendency Measures of Dispersion Data Visualization Techniques 1.3. Chapter 3: Two-Dimensional Numerical Series Bivariate Data Analysis Scatter Plots and Correlation Covariance and Correlation Coefficient Simple Linear Regression Analysis Analysis 	21
o2 Bcold	 Part 2: Probability Calculus 2.1. Chapter 1: The Probability Model Introduction to Probability Theory Sample Spaces and Events Rules of Probability 2.2. Chapter 2: Conditional Probability, Independence Introduction to Probability Theory Sample Spaces and Events Rules of Probability 2.3. Chapter 3: Random Variables Introduction to Probability Theory Sample Spaces and Events Rules of Probability 2.4. Chapter 4: Probability Distribution Introduction to Probability Theory Sample Spaces and Events Rules of Probability 	14 nieurs
03	 Part 3: Inferential Statistics ✓ 3.1 .Chapter 1: Estimation Theory ○ Point Estimation vs. Interval Estimation ○ Confidence Intervals for Means and Proportions ○ Margin of Error and Sample Size Determination ✓ 3.2. Chapter 2: Statistical Test ○ Introduction to Hypothesis Testing 	10

	 Types of Errors (Type I and Type II) Common Statistical Tests: Interpreting p-values and Test Results 	
Total		45

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
PLO.K1	 ✓ Understand fundamental statistical concepts, including data types, measures of central tendency, and dispersion. ✓ Analyze relationships between variables using correlation, covariance, and regression analysis. 	 Lecturing Class discussions 	- Assignments, - Exams
2.0	Skills		
PLO.S2	 ✓ Interpret statistical results effectively and communicate findings through reports, presentations, and discussions. ✓ Use statistical reasoning to support decision-making, ensuring clarity and collaboration in multidisciplinary environments. 	 Lecturing Class discussions Work in small groups 	- Assignments, - Exams
PLO.S7	 ✓ Apply probabilistic and statistical models in solving engineering problems, considering constraints and changing requirements. 	 Lecturing Class discussions Work in small 	- Assignments, - Exams
PLO.K1, PLO.S7	 ✓ Apply probability theory, including sample spaces, probability rules, and independence, to solve engineering problems. 	groups	

2. Assessment Tasks for Students

	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Practical Work (written or oral)	Weekly	00 %
2	Quizzes, Homework assignments	Random	00 %
3	First mid Term	8	35%
4	Final Exam	16	65%

E. Student Academic Counselling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

1- Office hours

2- Blackboard interface

F. Learning Resources and Facilities

1. Learning Resources

Required Textbooks	 Montgomery, D. C., & Runger, G. C. – Applied Statistics and Probability for Engineers, Wiley, 2018. Ross, S. M. – Introduction to Probability and Statistics for Engineers and Scientists, Academic Press, 2020. Devore, J. L. – Probability and Statistics for Engineering and the Sciences, Cengage Learning, 2016.
Essential References Materials	• NA
Electronic Materials	MIT OpenCourseWare – <i>Probability and Statistics Courses</i> (<u>https://ocw.mit.edu</u>)
Other Learning Materials	NA

2. Facilities Required

Item	Resources
Accommodation	Classroom board
Technology Resources	Data projector

G. Course Quality Evaluation

-			
Evaluation Areas/Issues	Evaluators	Evaluation Methods	
Effectiveness of teaching and	Students, course coordinator, Alumni,	Direct/Indirect	
assessment.	Employers	Direct/indirect	
Extent of achievement of	Faculty, Program Leaders, quality	Direct	
course learning outcomes.	department	Direct	
Quality of Learning resources	Faculty, Program Leaders,	Direct, Indirect	
Teaching and learning quality and effectiveness.	Students, Faculty Program Leaders,	Direct, Indirect	

H. Specification Approval Data

Council / Committee	Computer Engineering Council
Date	11/9/2023