

| <b>Course Title:</b> | Algorithmics of numerical analysis                 |
|----------------------|----------------------------------------------------|
| Course Code:         | CSE142                                             |
| Program:             | Master Degree In Computer Engineering              |
| Department:          | Computer Engineering                               |
| Course coordinator:  | Dr. Mohamed Fadhel SAAD                            |
| Institution:         | Private Higher School of Engineers of Gafsa (ESIP) |

# A. Course Identification

| 1. Credit hours:      | 3 (1.5-0-1.5)                                                              |
|-----------------------|----------------------------------------------------------------------------|
| 2. Course type        |                                                                            |
| a. College            | Department Others                                                          |
| b. Fundament          | al Transversal Optional                                                    |
| 3. Level/year at whi  | ich this course is offered: 1.1/3                                          |
| 4. Pre-requisites for | r this course (if any): Mathematical Foundations (Linear Algebra, Discrete |
| Mathematics), data st | ructure, Basic Programming Knowledge.                                      |

### 1. Mode of Instruction (mark all that apply)

| No | Mode of Instruction                    | Contact<br>Hours | Self-<br>study | Total workload |
|----|----------------------------------------|------------------|----------------|----------------|
| 1  | Traditional classroom                  |                  |                |                |
| 2  | Blended                                | 45               |                |                |
| 3  | E-learning                             |                  | 33             | 78             |
| 4  | Distance learning                      |                  |                |                |
| 5  | Other ()                               |                  | 9 T            | ~~~            |
|    | ole Superieu                           | IEU              |                | gement         |
| 2  | 2. Contact Hours (based on academic se | emester)         |                |                |

### 2. Contact Hours (based on academic semester)

| No | Activity          | <b>Contact Hours</b> |
|----|-------------------|----------------------|
| 1  | Lecture           | 12.5                 |
| 2  | Laboratory/Studio | 22.5                 |
| 3  | Tutorial          | 10                   |
| 4  | Others (specify)  | -                    |
|    | Total             | 45                   |



### **B.** Course Objectives and Learning Outcomes

### **Course Description**

This course introduces numerical methods for solving mathematical problems, including interpolation, nonlinear equations, numerical integration, and differential equations. Students will learn to analyze and implement these methods using programming tools like Python or MATLAB for real-world applications in computing, engineering, and data science.

### **Course Main Objective**

This course aims to:

- ✓ Understand fundamental numerical techniques for solving mathematical problems.
- ✓ Analyze and implement interpolation, integration, and equation-solving methods.
- ✓ Apply numerical methods in programming environments to solve real-world computational challenges.
- ✓ Evaluate the efficiency, accuracy, and stability of numerical algorithms.

| CLOs |                                                                                                                              | Aligned PLOs |
|------|------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1    | Knowledge and Understanding                                                                                                  |              |
| 1.1  | <ul> <li>✓ Explain and apply numerical methods for solving equations,<br/>interpolation, and integration.</li> </ul>         | PLO.K1       |
|      | Skills                                                                                                                       |              |
| 1.3  | <ul> <li>Develop and implement numerical algorithms using Python or<br/>MATLAB for computational problem-solving.</li> </ul> | PLO.S1       |
| 5.1  | <ul> <li>Analyze the efficiency and stability of numerical techniques in<br/>real-world scenarios.</li> </ul>                | PLO.S5       |

#### 1. Course Learning Outcomes

### **C.** Course Content

| No    | List of Topics                                                                                                                                                                                                              | <b>Contact Hours</b>    |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Ecolo | <ul> <li>Chapter 1: Numerical Interpolation</li> <li>1. Polynomial interpolation</li> <li>2. Divided differences</li> <li>3. Error analysis in interpolation</li> <li>4. Applications in numerical interpolation</li> </ul> | nieur<br><sub>4.5</sub> |
| 2     | <ul> <li>Chapter 2: Numerical Solution of Nonlinear Equations</li> <li>1. Bisection method</li> <li>2. Lagrange method</li> <li>3. Newton's method</li> <li>4. Method comparison and convergence analysis</li> </ul>        | 4.5                     |
| 3     | Chapter 3: Numerical Integration 1. Basic Newton-Cotes formulas                                                                                                                                                             | 3                       |



| No    | List of Topics                                            | <b>Contact Hours</b> |
|-------|-----------------------------------------------------------|----------------------|
|       | 2. Composite Newton-Cotes formulas                        |                      |
|       | 3. Gaussian quadrature (Gauss-Legendre)                   |                      |
|       | 4. Applications in numerical integration                  |                      |
|       | Chapter 4: Numerical Solution of Differential Equations – |                      |
|       | Single-Step Methods                                       |                      |
|       | 1. Euler's method                                         |                      |
| 4     | 2. Runge-Kutta methods                                    | 3                    |
|       | 3. Consistency, stability, and convergence                |                      |
|       | 4 Case studies in ordinary differential equations (ODEs)  |                      |
|       | Chapter 5: Numerical Solution of Differential Equations – |                      |
|       | Multi-Step Methods                                        |                      |
| 5     | 1. Adams-Bashforth methods                                | 3                    |
|       | 2. Adams-Moulton methods                                  |                      |
|       | 3. Comparative analysis of multi-step methods             |                      |
|       | Tutorials:                                                |                      |
|       | Tutorial 1: Interpolation and Approximation               |                      |
|       | Tutorial 2: Numerical Equation Solving                    |                      |
|       | Tutorial 3: Numerical Integration                         | 12                   |
|       | Tutorial 4: Single-Step Methods for Differential          |                      |
|       | Equations                                                 |                      |
|       | Tutorial 5: Multi-Step Methods                            |                      |
|       | Practical work:                                           |                      |
|       | Lab 1: Polynomial Interpolation and Error Analysis        |                      |
|       | Lab 2: Root Finding Methods                               |                      |
| 6     | Lab 3: Numerical Integration Techniques                   | 15                   |
|       | Lab 4: Solving Differential Equations (Single-Step        |                      |
|       | Methods)                                                  |                      |
|       | Lab 5: Multi-Step Methods for Differential Equations      |                      |
| Total | 1 *                                                       | 45                   |

# **D.** Teaching and Assessment

# D. Teaching and Assessment1. Alignment of Course Learning Outcomes with Teaching Strategies and **Assessment Methods**

| Code | Course Learning Outcomes                                                                                               | Teaching<br>Strategies                               | Assessment Methods |
|------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------|
| 1.0  | Knowledge and Understanding                                                                                            |                                                      |                    |
| K1   | <ul> <li>Explain and apply numerical methods<br/>for solving equations, interpolation,<br/>and integration.</li> </ul> | <ul><li>Lectures</li><li>Class discussions</li></ul> | Assignments, Exams |



| Code       | Course Learning Outcomes                                                                                          | Teaching<br>Strategies                                                                         | Assessment Methods                     |
|------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------|
| 2.0        | Skills                                                                                                            |                                                                                                |                                        |
| <b>S</b> 1 | Develop and implement numerical<br>algorithms using Python or MATLAB<br>for computational problem-solving.        | <ul> <li>Lectures</li> <li>Class discussions</li> <li>Assignments</li> <li>projects</li> </ul> | Assignments, Report,<br>Quizzes, Exams |
| S2         | <ul> <li>Analyze the efficiency and stability<br/>of numerical techniques in real-world<br/>scenarios.</li> </ul> | <ul> <li>Lectures</li> <li>Class discussions</li> <li>Assignments</li> <li>projects</li> </ul> | Assignments, Report,<br>Quizzes, Exams |

### 2. Assessment Tasks for Students

|   | Assessment task*                 | Week Due | Percentage of Total<br>Assessment Score |
|---|----------------------------------|----------|-----------------------------------------|
| 1 | Practical Work (written or oral) | Weekly   | 15%                                     |
| 2 | Quizzes, Homework assignments    | Random   | 10 %                                    |
| 3 | First mid Term                   | 8        | 25%                                     |
| 4 | Final Exam                       | 16       | 50%                                     |

## E. Student Academic Counselling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

1- Office hours

2- Blackboard interface

## F. Learning Resources and Facilities

1. Learning Resources

| Ecole Supé<br>Required Textbooks<br>Pri | <ol> <li>Jean-Paul Chehab, Interpolation polynomiale. Universite<br/>de Picardie Jules Vernes LAMFA CNRS 6140</li> <li>Burden, Richard L., and J. Douglas Faires. Numerical<br/>Analysis. Cengage Learning, 2016</li> <li>Quarteroni, Alfio, and Riccardo Sacco. Numerical<br/>Mathematics. Springer, 2014,.</li> </ol> |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Essential References Materials</b>   | NA                                                                                                                                                                                                                                                                                                                      |
| Electronic Materials                    | <ol> <li>MIT OpenCourseWare – Numerical Methods</li> <li>Python for Numerical Computation (NumPy, SciPy, and<br/>Matplotlib)</li> <li>Matlab Online Documentation &amp; Tutorials</li> </ol>                                                                                                                            |
| Other Learning Materials                | NA                                                                                                                                                                                                                                                                                                                      |



### 2. Facilities Required

| Item                 | Resources                                |
|----------------------|------------------------------------------|
|                      | Classroom board                          |
| Accommodation        | Computer lab with the necessary software |
|                      | Internet access                          |
| Technology Resources | Data projector                           |

# **G.** Course Quality Evaluation

| <b>Evaluation Areas/Issues</b>                   | Evaluators                            | <b>Evaluation Methods</b> |
|--------------------------------------------------|---------------------------------------|---------------------------|
| Effectiveness of teaching and                    | Students, course coordinator, Alumni, | Direct/Indirect           |
| assessment.                                      | Employers                             |                           |
| Extent of achievement of                         | Faculty, Program Leaders, quality     | Direct                    |
| course learning outcomes.                        | department                            |                           |
| Quality of Learning resources                    | Faculty, Program Leaders,             | Direct, Indirect          |
| Teaching and learning quality and effectiveness. | Students, Faculty Program Leaders,    | Direct, Indirect          |

# H. Specification Approval Data

| Council / Committee | Computer Engineering Council |
|---------------------|------------------------------|
| Date                | 11/09/2023                   |

# Ecole Supérieure d'Ingénieurs Privée de Gafsa