

Course Title:	Languages theory and compilation
Course Code:	CSE211
Program:	Master Degree In Computer Engineering
Department:	Computer Engineering
Course coordinator:	Dhekra CHERMITI
Institution:	Private Higher School of Engineers of Gafsa (ESIP)

A. Course Identification

1. Credit	t hours: 3 (2-1-0)	
2. Course	e type	
a. C	College Department Others	
b.	Fundamental Transversal Optional	
3. Level/year at which this course is offered: 1.2/3		
4. Pre-requisites for this course : Basic Computer architecture, Programming languages,		
Formal logic, Data structures and algorithms, Discrete Mathematics		

1. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Self- study	Total workload
1	Traditional classroom			
2	Blended	45		
3	E-learning		33	78
4	Distance learning			
5	Other ()			

2. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture Cele Cele Cele	30
2	Laboratory/Studio	-
3	Tutorial	15
4	Others (specify)	-
	Total	45

B. Course Objectives and Learning Outcomes

Course Description

This course introduces formal languages, automata theory, and compiler design. Students will learn about language classification (regular, context-free, and Turing-complete languages), finite automata, grammars, and parsing techniques.

The course covers lexical analysis, syntax analysis, and semantic processing in compiler design, including finite automata, pushdown automata, and Turing machines. It also explores context-free grammars, parsing algorithms (LL, LR), and code-generation techniques used in modern compilers.

By the end of the course, students will be able to analyze formal languages, design parsers, and understand compiler structure, applying these concepts to programming language development.

Course Main Objective

This course aims to:

- ✓ Introduce formal language theory, including regular, context-free, and recursively enumerable languages.
- ✓ Develop an understanding of automata theory, covering finite automata, pushdown automata, and Turing machines.
- ✓ Explain the structure of compilers, focusing on lexical analysis, syntax analysis, and semantic processing.
- ✓ Teach parsing techniques, including top-down (LL) and bottom-up (LR) parsing methods.
- Provide an overview of code generation and optimization, preparing students for programming language implementation.

		CLOs	Aligned PLOs
		Knowledge and Understanding	
	1.1	✓ Understand the different categories of programming languages, including high-level languages, intermediate languages, and low-level languages.	
	2.1	 Explain the fundamental concepts of formal languages, automata theory, and their classification (regular, context-free, and Turing-complete languages). 	PLOK.1
	3.1	✓ Describe the key components of compiler architecture, including lexical analysis, syntax analysis, and code generation.	
		Skills	
I	2.1	 Develop structured problem-solving skills by analyzing formal languages and designing parsing techniques. 	DLOS 1
I	2.2	 Construct and evaluate formal proofs and derivations in language theory and automata. 	PLOS.1
I	2.5	 Implement and optimize parsing techniques, including LL and LR parsing, for compiler design. 	PLO.S5

1. Course Learning Outcomes

C. Course Content

No	List of Topics	Contact Hours
1	 Chapter 1: Introduction to Language Theory 1. Introduction 2. Basic concepts of formal languages 3. Alphabets, words, and languages 4. Language classification (Chomsky hierarchy) 	7
2	 Chapter 2: Automata Theory 1. Introduction 2. Finite automata (DFA & NFA) 3. Regular expressions and regular languages 4. Pushdown automata and context-free languages 5. Turing machines and decidability 	7
3	 Chapter 3: Grammars and Parsing 1. Introduction 2. Context-free grammars (CFGs) 3. Syntax trees and derivations 4. LL and LR parsing techniques 5. Recursive descent and shift-reduce parsing 	8
4	 Chapter 4: Compiler Design and Code Generation 1. Compiler structure and phases 2. Lexical analysis and tokenization 3. Syntax analysis and semantic processing 4. Code generation and optimization 	8
Total		

Tutorials work Content

No	List of Topics	Contact Hours
1	 Tutorial 1: Introduction to Formal Languages and Automata Alphabets, words, and languages Language classification (Regular, Context-Free, Turing-complete) Regular expressions and finite automata (DFA, NFA) 	3
2	 Tutorial 2: Context-Free Grammars and Pushdown Automata Context-Free Grammars (CFGs) Parse trees and derivations 	3
3	Tutorial 3: Parsing Techniques and Syntax Analysis	3

	 LL(1) and LR(1) parsing Recursive descent and shift-reduce parsing Syntax trees and ambiguity in parsing 	
4	Tutorial 4: Turing Machines and Computability	3
5	Tutorial 5: Compiler Phases and Code Generation	3
Total		15

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	TeachingStra tegies	AssessmentMethods
1.0	Knowledge and Understanding		
PLOK.1	✓ Understand the different categories of		
	programming languages, including high- level languages, intermediate languages, and low-level languages.		
	 Explain the fundamental concepts of formal languages, automata theory, and their classification (regular, context-free, 	- Lecturing, Tutorial	- Assignments, Quizzes , Exams,
	 and Turing-complete languages). ✓ Describe the key components of compiler architecture, including lexical analysis, syntax analysis, and code generation. 		
2.0	Skills		
PLOS.1	✓ Develop structured problem-solving skills by analyzing formal languages and designing parsing techniques		
Eco	 ✓ Construct and evaluate formal proofs and derivations in language theory and automata. 	- Lecturing, Tutorial	- Assignments, Quizzes , Exams,
PLO.S5	 ✓ Implement and optimize parsing techniques, including LL and LR parsing, for compiler design. compilation phases 	Gafsa	l

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Practical Work (written or oral)	Weekly	00%
2	Quizzes, Homework assignments	Random	00%
3	First mid Term	8	35%

#	Assessment task*	Week Due	Percentage of Total Assessment Score
4	Final Exam	16	65%

E. Student Academic Counselling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- Office hours
- Blackboard interface
- Academic advisor
- Bibliotic

F. Learning Resources and Facilities

1. Learning Resources

	1. Grune, Dick, and Ceriel J. H. Jacobs. <i>Modern Compiler</i> <i>Design</i> . Springer, 2012.
Required Textbooks	 Sudkamp, Thomas A. Languages and Machines: An Introduction to the Theory of Computer Science. Addison-Wesley, 2006.
	3. Hopcroft, John E., Rajeev Motwani, and Jeffrey D.
	Ullman. Introduction to Automata Theory, Languages,
	and Computation. Pearson, 2006
Essential References Materials	• NA
	1. MIT OpenCourseWare – Automata, Computability, and
Electronic Materials	Complexity
Electronic Water lais	2. CS50 Harvard – Introduction to Programming Languages and
	Compilers
Other Learning Materials	NA
	VIANNA 7 NOANIANN

1. Facilities Required

Item	Resources
Accommodation	Classroom board
Technology Resources	Data projector

G. Course Quality Evaluation

Tunisian Republic Private Higher School of Engineers of Gafsa Private Higher Education Institution, State-approved under N° 05-2013

Evaluation Areas/Issues	Evaluators	Evaluation Methods	
Effectiveness of teaching and	Students, course coordinator, Alumni,	Direct/Indirect	
assessment.	Employers	Direct/indirect	
Extent of achievement of	Faculty, Program Leaders, quality	Direct	
course learning outcomes.	department	Direct	
Quality of Learning resources	Faculty, Program Leaders,	Direct, Indirect	
Teaching and learning quality	Students, Faculty Program Leaders,	Direct, Indirect	
and effectiveness.	Students, Faculty Flogram Leaders, Direct, indirect		

H. Specification Approval Data

Council / Committee	Computer Engineering Council
Date	07/02/2024

