

Course Title:	Processor design methodology
Course Code:	CSE311
Program:	Master Degree In Computer Engineering
Department:	Computer Engineering
Course coordinator:	Dr. Oussama boufares
Institution:	Private Higher School of Engineers of Gafsa (ESIP)

A. Course Identification

 2. Course type a. College Department Others b. Fundamental Transversal Optional 3. Level/year at which this course is offered: 2.1/3 4. Pre-requisites for this course : Digital circuits(CSE122), Architecture & micro 	1. Credit hours: 3 (2-1-0)	
 b. Fundamental Transversal Optional 3. Level/year at which this course is offered: 2.1/3 4. Pre-requisites for this course : Digital circuits(CSE122), Architecture & micro 	2. Course type	
3. Level/year at which this course is offered: 2.1/3 4. Pre-requisites for this course : Digital circuits(CSE122), Architecture & micro	a. College Department Others	
4. Pre-requisites for this course : Digital circuits(CSE122), Architecture & micro	b. Fundamental Transversal Optional	
	3. Level/year at which this course is offered: 2.1/3	
$\pi\pi_{2} = 2222 \pi_{2} (CSE242) CSE221$	4. Pre-requisites for this course : Digital circuits(CSE122), Architecture & micro	
processors(CSE242), CSE251	processors(CSE242), CSE231	

1. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Self- study	Total workload
1	Traditional classroom			
2	Blended	45		
3	E-learning		35	80
4	Distance learning			
5	Other ()			

2. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture EIVEEUE Galloa	30
2	Laboratory/Studio	-
3	Tutorial	15
4	Others (specify)	-
	Total	45

B. Course Objectives and Learning Outcomes

Course Description

This course introduces the design and implementation of processors, focusing on the MIPS R3000 architecture. Students will explore instruction set architecture (ISA), arithmetic operations, single-cycle and multi-cycle processor design, and pipelining concepts. Through theoretical learning and practical labs, they will analyze processor performance and understand modern CPU design methodologies.

Course Main Objective

This course aims to:

- ✓ Understand the fundamentals of computer organization and processor design.
- ✓ Analyze instruction set architecture and its impact on performance.
- ✓ Implement single-cycle and multi-cycle processor designs.
- ✓ Explore pipeline concepts and hazard handling techniques.
- ✓ Develop and test processor simulations using MIPS simulators.

1. Course Learning Outcomes

CLO	CLOs	
	Knowledge and Understanding	
1.1	Explain the fundamental principles of MIPS processor architecture, including instruction set design and arithmetic operations.	PLO.K1
	Skills	
2.1	Design and implement single-cycle and multi-cycle processor architectures using simulation tools.	PLO.S.2
3.1	Analyze the impact of pipelining on CPU performance and solve pipeline hazards.	PLO S5

C. Course Content

No	List of Topics	Contact Hours
1	 Chapter 1: Organization and Design of Computers 1. Overview of computer architecture and organization. 2. Components of a processor (CPU, memory, I/O). 3. Performance evaluation and metrics (CPI, MIPS, FLOPS). 4. RISC vs. CISC architectures. 	nieur
2	 Chapter 2: The Architecture of the Instruction Set 1. Introduction to Instruction Set Architectures (ISAs). 2. MIPS R3000 instruction set (registers, addressing modes, instruction types). 3. Memory organization and addressing (stack, heap, memory hierarchy). 4. Assembly language programming basics. 	8
3	Chapter 3: Computer Arithmetic 1. Number representation (binary, signed, floating-point).	3

Tunisian Republic Private Higher School of Engineers of Gafsa Private Higher Education Institution, State-approved under N° 05-2013

	2. Arithmetic operations (addition, subtraction, multiplication, division).	
	3. ALU (Arithmetic Logic Unit) design.	
	4. Floating-point arithmetic	
	Chapter 4: Mono-Cycle Processor Design	
	1. Overview of single-cycle processor design.	
4	2. Implementation of control and data paths.	3
	3. Single-cycle execution of MIPS instructions.	
	Chapter 5: Design of a Multi-Cycle Processor	
	1. Multi-cycle instruction execution.	
5	2. Control unit design for multi-cycle processors.	5
5	3. Comparison of single cycle vs. multi-cycle execution.	5
	4. Performance and cost trade-offs.	
	Chapter 6: Pipeline Concept	
	1. Introduction to pipelining and instruction-level parallelism.	
6	 Pipeline hazards (structural, data, control). Tachnismus for hazard in duction (formanding stall detection hazard) 	5
0	3. Techniques for hazard reduction (forwarding, stall detection, branch	5
	prediction).	
	4. Performance analysis of pipelined processors.	
7	Tutorial	
	Tut1 : Micro processor architecture	
	Tut2 : MIPS processor	15
	Tut2: Min 5 processor15Tut3: Mono-cycle processor and multi-cycle processor.15	
	Tut3: Pipeline]
Tota	d	45

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
К .1	 Explain the fundamental principles of processor architecture, including instruction set design and arithmetic operations. 	- Lecturing	- Assignments, Quizzes, Exams,
2.0	Skills		
S.2	 Design and implement single-cycle and multi-cycle processor architectures using simulation tools. 	Lecturing Class discussions	- Assignments, , Exams,
3.0	Values		

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
V.3	✓ Analyze the impact of pipelining on CPU performance and solve pipeline hazards.	 Lectures Class discussions Assignments projects 	- Assignments, Report, Quizzes, Exams

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Practical Work (written or oral)	Weekly	00%
2	Quizzes, Homework assignments	Random	00%
3	First mid Term	8	35%
4	Final Exam	16	65%

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- Office hours
- Blackboard interface
- Academic advisor
- Bibliotic

F. Learning Resources and Facilities

1. Learning Resources

Required Textbooks	 Andrew S. Tanenbaum & Todd Austin. Structured Computer Organization. 6th Edition, Pearson, 2012. Charles E. Leiserson & James S. Pierre. Computer System Design: System-on-Chip & Multicore Architectures. 1st Edition, MIT Press, 2015. David A. Patterson & John L. Hennessy. Computer Organization and Design: The Hardware/Software Interface. 6th Edition, Morgan Kaufmann, 2020.
Essential References Materials	 Architecture lessons from Peter Niebert: http://www.cmi.univ-mrs.fr/~niebert/archi2012.php Introduction au MIPS : http://logos.cs.uic.edu/366/notes/mips%20quick%20tutorial.htm Introduction to MIPS: http://logos.cs.uic.edu/366/notes/mips%20quick%20tutorial.htm Table de référence du MIPS : https://pageperso.lis-lab.fr/~alexis.nasr/Ens/Compilation/mipsref.pdf

Electronic Materials	 RISC-V & MIPS Assembly Programming Guide MIT OpenCourseWare – Computer System Design
Other Learning Materials	- NA

2. Facilities Required

Item	Resources
	Classroom board
Accommodation	Computer lab with the necessary software
	Internet access
Technology Resources	Data projector

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and	Students, course coordinator, Alumni,	Direct/Indirect
assessment.	Employers	Direct/indirect
Extent of achievement of course	Faculty, Program Leaders, quality	Direct
learning outcomes.	department	
Quality of Learning resources	Faculty, Program Leaders,	Direct, Indirect
Teaching and learning quality	Students, Faculty Program Leaders,	Direct, Indirect
and effectiveness.		

H. Specification Approval Data

Council / Committee	Computer Engineering Council	
Date	11/09/2023	

Ecole Supérieure d'Ingénieurs Privée de Gafsa