

Course Title:	Artificial intelligence
Course Code:	CSE432
Program:	Master Degree In Computer Engineering
Department:	Computer Engineering
Course coordinator:	Dr. Mohamed OTHMANI
Institution:	Private Higher School of Engineers of Gafsa (ESIP)

A. Course Identification

1. Credit hours: 3 (1.5-1.5-0)	
2. Course type	
a. College Department Others	
b. Fundamental Transversal Optional	
3. Level/year at which this course is offered: 2.2/3	
4. Pre-requisites for this course (if any): Python Programming, Formal logic (CSE141),	
CSE131, CSE112, CSE322, CSE212	

1. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Self- study	Total workload	
1	Traditional classroom				
2	Blended	22.5			
3	E-learning		16.5	39	
4	Distance learning				
5	Other ()		9 T	/ •	
EC	cole Superieu	rea		genieurs	5

2. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	12.5
2	Laboratory/Studio	
3	Tutorial	10
4	Others (specify)	
	Total	22.5

B. Course Objectives and Learning Outcomes

Course Description

The "Artificial Intelligence" (CSE432) course introduces students to AI concepts, learning methods, and machine learning techniques. It covers Supervised and Unsupervised Learning, and Neural Networks (MLP).

Students will learn to analyze, design, and improve AI models for classification, regression, clustering, and decision-making tasks.

Course Main Objective

By the end of this course, students will be able to:

- ✓ Understand the fundamental concepts of Artificial Intelligence (AI), including learning paradigms and their applications.
- ✓ Understand the basic concept of Expert Systems
- ✓ Master machine learning techniques for Supervised (Classification & Regression) and Unsupervised Learning (Preprocessing & Clustering).
- ✓ Implement and optimize AI models, including decision trees, k-NN, Adaboost, and Multi Layer Perception (MLP).
- ✓ Develop and evaluate AI-based applications by applying performance metrics, model selection, and hyperparameter tuning.

CLO	VS	AlignedPLOs
1	Knowledge and understanding	0
1.1	✓ Demonstrate foundational knowledge of Artificial Intelligence, including AI paradigms, expert systems and learning models.	
1.2	✓ Understand Supervised Learning algorithms (k-NN, Decision Trees, Adaboost) and Unsupervised Learning techniques (Clustering, Dimensionality Reduction).	PLO.K1
2	Skills	
2.1	✓ Develop and apply machine learning models for classification, regression, and clustering using Python frameworks.	PLO.S2
7.1	 Build, train, and optimize neural networks for AI-driven applications. 	
7.2	 Analyze and develop AI software solutions while considering performance, scalability, and usability. 	PLO.S7

1. Course Learning Outcomes

C. Course Content

No	List of Topics	Contact Hours
1	 Chapter 1: Introduction to AI 1. AI paradigms 2. Real-world applications of AI 3. Mathematical foundations for AI: Logic, Probability, and Optimization 	5
2	 Chapter 2: Expert Systems 1. Basic Concept of Expert Systems 2. Rule-Based System 3. Inference Engine 4. User interface 5. Applications of Expert Systems 	6
3	 Chapter 3: Machine Learning: Supervised Learning 1. Linear & Logistic Regression 2. Decision Trees 3. Random Forests 4. Neural Networks 5. SVM 	6
4Chapter 4: Machine Learning: Unsupervised Learning 1. K-Means Clustering 2. Hierarchical Clustering 3. Dimensionality Reduction (PCA, LDA)		5.5
Total		22.5

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
PLO.K1	 ✓ Demonstrate foundational knowledge of Artificial Intelligence, including AI paradigms, expert systems and learning models. ✓ Understand Supervised Learning algorithms (k-NN, Decision Trees, Adaboost) and Unsupervised Learning techniques (Clustering, Dimensionality Reduction). 	 Problem- Based Learning 	Assignments, Homework Quizzes, Exams,

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
2.0	Skills		
PLO.S2	✓ Analyze and develop AI software solutions while considering performance, scalability, and usability.Build, train, and optimize neural networks for AI-driven applications.	 Lecturing Tutorial Problem- Based Learning 	Assignments, Homework
PLO.S7	✓ Analyze, Design and develop software related to artificial intelligence, with taking in consideration its static, dynamic and ergonomic aspects with recognition and respect of planning issues.	 Project-Based Learning 	Quizzes, Exams, Report,

2. Assessment Tasks for Students

	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Practical Work (written or oral)	Weekly	00%
2	Quizzes, Homework assignments	Random	00%
5	Final Exam	16	100%

E. Student Academic Counselling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

- 1- Office hours
- 2- Blackboard interface

F. Learning Resources and Facilities

1. Learning Resources

	and DeepLearning.AI3. MIT OpenCourseWare: Introduction to AI & Machine Learning (ocw.mit.edu)
Other Learning Materials	NA

2. Facilities Required

Item	Resources
	Classroom board
Accommodation	Computer lab with the necessary software
	Internet access
Technology Resources	Data projector

G. Course Quality Evaluation

EvaluationAreas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and	Students, coursecoordinator, Alumni,	Direct/Indirect
assessment.	Employers	
Extent of achievement of course	Faculty, Program Leaders, quality	Direct
learning outcomes.	department	
Quality of Learning resources	Faculty, Program Leaders,	Direct, Indirect
Teaching and learning quality	Students, Faculty Program Leaders, Direct,	Direct, Indirect
and effectiveness.		Direct, indirect

H. Specification Approval Data

Council / Committee	Computer Engineering Council
Date	07/02/2024

Ecole Supérieure d'Ingénieurs Privée de Gafsa