

Course Title:	Model Driven Engineering
Course Code:	CSE562/1
Program:	Master Degree In Computer Engineering
Department:	Computer Engineering
Course coordinator:	Mr. AHMED KHLIFI
Institution:	Private Higher School of Engineers of Gafsa (ESIP)

A. Course Identification

1.	Credit hours: 3 (1.5-0-1.5)
2.	Course type
a.	College Department Others
b.	Fundamental Transversal Optional
3.	Level/year at which this course is offered: 3.1/3
4.	Pre-requisites for this course (if any): UML modeling, Software Engineering Fundamentals

1. Mode of Instruction (mark all that apply

No	Mode of Instruction	Contact Hours	Self- study	Total workload
1	Traditional classroom			
2	Blended	30		
3	E-learning		22	52
4	Distance learning			
5	Other ()			

2. Contact Hours

No	Activity	Contact Hours
1	Lecture	15
2	Laboratory/Studio	15
3	Tutorial	-
4	Others (specify)	-
	Total	30

B. Course Objectives and Learning Outcomes

Course Description

This course provides a comprehensive introduction to Model-Driven Engineering (MDE), covering its concepts, principles, and practical applications. It explores the use of models as central artifacts in software development, focusing on topics such as metamodelling, model transformations, and the Model-Driven Architecture (MDA) approach. The course includes hands-on activities to design and manipulate models using state-of-the-art tools like Eclipse and Kermeta.

Course Main Objective

- To provide an advanced understanding of the principles, theories, and practices of Model-Driven Engineering (MDE) and its applications in solving complex software development challenges.
- To enable students to design and implement metamodels and transformations using standardized tools like MOF, UML, OCL, and Eclipse Modeling Framework.
- To equip students with skills to evaluate and optimize MDE-based solutions for real-world applications, including IoT, embedded systems, and software architecture.
- To develop project management, teamwork, and communication skills by working on collaborative projects related to MDE practices.
- To prepare students to integrate MDE approaches into specialized fields such as software engineering, IT security, or artificial intelligence, addressing industry-specific challenges.
- To foster critical thinking and research capabilities for analyzing emerging trends in MDE and contributing to scholarly publications or innovative projects.

	CLOs	Aligned PLOs
1	Knowledge and Understanding	
1.1	✓ Understand core principles, theories, and practices of MDE.	PLO.K.1
1.1	✓ Apply advanced knowledge of MDE in specialized areas of software engineering.	PLO.K3
2	Skills	
2.1	✓ Effectively communicate complex technical concepts in MDE through presentations and reports.	PLO.S2
3.1	✓ Demonstrate project management and teamwork in MDE-focused development tasks.	PLO.S3
6.1	 ✓ Analyze and evaluate MDE solutions for their integration into Internet of Things (IoT) infrastructures. 	PLO.S6
7.1	 Design, analyze, and implement MDE solutions that address real-world challenges and respect ergonomic, dynamic, and static constraints. 	PLO.S7

1. Course Learning Outcomes

C. Course Content

No	List of Topics	Contact Hours
1	 Chapter 1: Introduction to Model-Driven Engineering (MDE) 1. Motivations and Challenges of MDE 	
	2. Evolution of Software Engineering and MDE	4
	3. Role of Models in Software Development	-
	4. Key Concepts: Abstraction and Automation	
	5. Benefits of MDE in Complex Systems	
	□ Chapter 2: Models, Metamodels, and Transformations	
	1. Defining Models and Metamodels	
2	2. Conformance Relationships	6
_	3. 4-Level Hierarchy: MOF, UML, and Application Models	Ũ
	4. Model Transformations: Types and Use Cases	
	5. Practical: Model Creation and Transformation	
	□ Chapter 3: Model-Driven Architecture (MDA)	
	1. Principles of MDA: CIM, PIM, PSM	
3	2. MDA in Software Development	7
-	3. Supporting Standards: MOF, XMI, UML	,
	4. MDA Process: Business and Platform Models	
	5. Case Studies in Software Development	
	□ Chapter 4: MDE Tools and Technologies	
	1. Overview of Modeling Tools	
4	2. Practical: Model Design with Eclipse	6
1	3. Introduction to MOF and OCL	
	4. Other Key MDE Tools	
	□ Chapter 5: Verification, Simulation, and Industry Applications	
	5. Verifying Model Consistency	
5	6. Model Simulation and Execution	017 PC
	7. Case Studies: Domain-Specific Models	Cui D
	8. MDE in Industry: IoT, Embedded Systems	
	9. Challenges and MDE Standard	20
	Total	30

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
PLO.K1	 ✓ Understand core principles, theories, and practices of MDE. 	Lecturing	Assignments
PLO.K2	 Apply advanced knowledge of MDE in specialized areas of software engineering. 	Course project Assignment work	Quizzes, homework
2.0	Skills		
PLO.S2	 Effectively communicate complex technical concepts in MDE through presentations and reports. 		
PLO.S3	 ✓ Demonstrate project management and teamwork in MDE-focused development tasks. 	- Lectures - Class discussions	Assignments Penert
PLO.S6	 ✓ Analyze and evaluate MDE solutions for their integration into Internet of Things (IoT) infrastructures. 	- Course project Assignment work - projects	Quizzes, Exams
PLO.S7	 ✓ Design, analyze, and implement MDE solutions that address real-world challenges and respect ergonomic, dynamic, and static constraints 		

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Quizzes, Homework assignments	Random	00%
2	Final Exam	11	100%

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- Office hours
- Blackboard interface

F. Learning Resources and Facilities

1. Learning	Kesources
	1. Brambilla, M., Cabot, J., & Wimmer, M. (2017). Model-Driven
	Software Engineering in Practice: Second Edition. Springer.
	2. García DíazVicente, et al. Advances and Applications in Model-
	Driven Engineering. Hershey, PA, Information Science Reference,
Required Textbooks	2014.
Requireu Textbooks	3. Scott Tilley and Brianna (2014). <i>Hard Problems in Software Testing:</i>
	Solutions Using Testing as a Service (TaaS)
	4. Jean-Marc Jézéquel, Benoit Combemale, Didier Vojtisek. Ingénierie
	Dirigée par les Modèles : des concepts à la pratique Ellipses.
	Ellipses, pp.144, 2012
Essential References	
Materials	
	 Online Courses on MDE & UML – Coursera, Udacity, Pluralsight
Electronic Materials	 YouTube Channels: Modeling Languages, Eclipse Foundation.
	Software Engineering Daily
Other Learning	
Materials	INA I I I I I I I I I I I I I I I I I I

2. Facilities Required

Item	Resources	
Accommodation		
(Classrooms, laboratories, demonstration	classroom board software	
rooms/labs, etc.)		
Technology Resources	data shawe	
(AV, data show, Smart Board, software, etc.)	data snow;	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and	Students, course coordinator, Alumni,	Direct/Indirect
assessment.	Employers	Direct/indirect
Extent of achievement of course	Faculty, Program Leaders, quality	Direct
learning outcomes.	department	Direct
Quality of Learning resources	Faculty, Program Leaders,	Direct, Indirect
Teaching and learning quality	Students, Faculty Program Leaders	Direct Indirect
and effectiveness.	Students, Faculty Flogram Leaders,	Direct, mullect

H. Specification Approval Data

Council / Committee	Computer Engineering Council
Date	05/10/2022