

Course Title:	Distributed database
Course Hue:	Distributed database

Course Code: CSE572/1

Program: Master Degree In Computer Engineering

Department: Computer Engineering

Course coordinator: Mohamed Elfadhel SAAD

Institution: Private Higher School of Engineers of Gafsa (ESIP)

A. Course Identification

1. Credit hours: 3 (1.5-0-0)	
2. Course type	
a. University College Department Others	
b. Required Elective	
3. Level/year at which this course is offered: 3.1/3	
4. Pre-requisites for this course: CSE323, CSE431, Networks and protocols	

1. Mode of Instruction (mark all that apply)

	1. Whole of first action (mark an	mat appry)		
No	Mode of Instruction	Contact Hours	Self- study	Total workload
1	Traditional classroom			
2	Blended	15		
3	E-learning		11	26
4	Distance learning			
5	Other ()			

2. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	7.5
2	Laboratory/Studio	-
3	Tutorial I IIVCC UC GAIS	7.5
4	Others (specify)	-
	Total	15

B. Course Objectives and Learning Outcomes

Course Description

In this course we will focus on the essentials of the design of a distributed database and the fragmentation techniques in order to establish the allocation scheme of a distributed database. Introduce the main concepts of Distributed Query Processing and Optimization. Present the transaction concurrency problem, access concurrency and reprise.

Course Main Objective

- ✓ Know and introduce the main notions of distributed databases
- ✓ Understand the different database architectures
- ✓ Develop a Designing distributed database
- ✓ Identify the basic concepts of distributed Query Processing and Optimization
- ✓ Master the concept of transaction
- ✓ The skill to manage access concurrency and reprise
- ✓ Mange the design problems and ethics related to distributed database
- ✓ Conclude effectively the basics, principles, and theories related to distributed database with other disciplines

1. Course Learning Outcomes

	1. Course Learning Outcomes	
CLOs		Aligned PLOs
1	Knowledge and Understanding	
1.1	Know and introduce the main notions of distributed databases	PLOK.2
3.1	Understand the different database architectures	PLOK.3
2	Skills	
1.1	Develop a Designing distributed database	PLOS.1
2.1	Identify the basic concepts of distributed Query Processing and	PLO.S2
2.1	Optimization	= 1 LO.32
3.1	Master the concept of transaction	PLO.S3
4.1	The skill to manage access concurrency and reprise	PLO.S4
6.1	Mange the design problems and ethics related to distributed	PLO.S6
0.1	database	FLO.30
7.1	Conclude effectively the basics, principles, and theories related to	PLO.S7
7.1	distributed database with other disciplines	FLO.5/

C. Course Content Derieure

No	List of Topics	Contact Hours
1	Know and introduce the main notions of distributed databases	1.5
2	Designing a distributed database	1.5
3	Fragmentation Techniques	1.5
4	The basic concepts of distributed Query Processing and Optimization	1.5
5	Access concurrency and reprise	1.5
Tota	al <u> </u>	7.5

D. Tutorial work Content

No	List of Topics	Contact Hours
1	Tutorial 1: Distributed database design	3
2	Tutorial 2: Distributed Query Processing and Optimization	2
3	Tutorial 3: Access concurrency and reprise	2.5
Total		7.5

E. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Tabbetonizate Tracenous				
Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods	
1.0	Knowledge and Understanding			
PLOK.2	Know and introduce the main notions of distributed databases	Lecturing	Assignments, Quizzes, Exams,	
PLOK.3	Understand the different database architectures	Lecturing	Assignments, Quizzes, Exams,	
2.0	Skills			
PLOS.1	Develop a Designing distributed database	Lecturing Tutorial	Assignments, Quizzes, Exams,	
PLOS.2	Identify the concepts of distributed Query Processing and Optimization	Lecturing Tutorial	Assignments, Quizzes, Exams,	
PLOS.3	Master the concept of transaction	Lecturing Tutorial	Assignments, Quizzes, Exams,	
PLOS.4	The skill to manage access concurrency and reprise	Lecturing Tutorial	Assignments, Quizzes, Exams,	
PLOS.6	Mange the design problems and ethics related to distributed database	Lecturing Tutorial	Assignments, Quizzes, Exams,	
PLOS.7	Conclude effectively the basics, principles, and theories related to distributed database with other disciplines	Lecturing Tutorial	Assignments, Quizzes, Exams,	

2. Assessment Tasks for Students

	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Practical Work (written or oral)	Weekly	00%
2	Quizzes, Homework assignments	Random -	00%
5	Final Exam	6	100%

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- 2- Office hours
- 3- Blackboard interface

F. Learning Resources and Facilities

1. Learning Resources

Required Textbooks	 Özsu, M. Tamer, & Valduriez, Patrick – Principles of Distributed Database Systems, 4th Edition, Springer, 2020 Rim Moussa – Distributed Database Management Systems & Distribution Mechanisms with Oracle
Essential References Materials	- NA
Electronic Materials	 PostgreSQL Documentation – Distributed database replication and sharding techniques (www.postgresql.org/docs) MongoDB Distributed Systems Guide – Handling distributed NoSQL databases (www.mongodb.com)
Other Learning Materials	NA

2. Facilities Required

Item	Resources
Accommodation	
(Classrooms, laboratories, demonstration	classroom board software
rooms/labs, etc.)	
Technology Resources	data sharry
(AV, data show, Smart Board, software, etc.)	data show;

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods	
Effectiveness of teaching and	Students, course coordinator, Alumni,	Dinast/Indinast	
assessment.	Employers	Direct/Indirect	
Extent of achievement of course	Faculty, Program Leaders, quality	Direct	
learning outcomes.	department		
Quality of Learning resources	Faculty, Program Leaders,	Direct, Indirect	
Teaching and learning quality	Students Faculty Draggery Landers	Direct, Indirect	
and effectiveness.	Students, Faculty Program Leaders,	Direct, marrect	

H. Specification Approval Data Ingénieurs

Council / Committee	Computer Engineering Council
Date	11/09/2023